陶瓷
材料科学
亚稳态
纳米壳
相(物质)
多孔性
烧结
热力学
尼亚尔
化学工程
纳米颗粒
纳米-
纳米技术
化学
金属间化合物
冶金
复合材料
有机化学
物理
合金
工程类
作者
Shuo Liu,Chaochao Dun,Qike Jiang,Zhengxi Xuan,Feipeng Yang,Jinghua Guo,Jeffrey J. Urban,Mark T. Swihart
标识
DOI:10.1038/s41467-024-45413-w
摘要
Abstract The Hume-Rothery rules governing solid-state miscibility limit the compositional space for new inorganic material discovery. Here, we report a non-equilibrium, one-step, and scalable flame synthesis method to overcome thermodynamic limits and incorporate immiscible elements into single phase ceramic nanoshells. Starting from prototype examples including (NiMg)O, (NiAl)O x , and (NiZr)O x , we then extend this method to a broad range of Ni-containing ceramic solid solutions, and finally to general binary combinations of elements. Furthermore, we report an “encapsulated exsolution” phenomenon observed upon reducing the metastable porous (Ni 0.07 Al 0.93 )O x to create ultra-stable Ni nanoparticles embedded within the walls of porous Al 2 O 3 nanoshells. This nanoconfined structure demonstrated high sintering resistance during 640 h of catalysis of CO 2 reforming of methane, maintaining constant 96% CH 4 and CO 2 conversion at 800 °C and dramatically outperforming conventional catalysts. Our findings could greatly expand opportunities to develop novel inorganic energy, structural, and functional materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI