Effect of Anode Interfacial Modification by Self-Assembled Monolayers on the Organic Solar Cell Performance

苯甲酸 单层 阳极 能量转换效率 电极 开路电压 有机太阳能电池 润湿 电流密度 材料科学 工作职能 太阳能电池 化学工程 自组装单层膜 图层(电子) 聚合物太阳能电池 短路 化学 纳米技术 光电子学 有机化学 电压 复合材料 物理化学 聚合物 电气工程 工程类 物理 量子力学
作者
Adem Mutlu,Mesude Zeliha Arkan,Mustafa Can,Cem Tozlu
出处
期刊:ACS omega [American Chemical Society]
卷期号:9 (7): 7413-7423 被引量:1
标识
DOI:10.1021/acsomega.3c04081
摘要

A series of self-assembled monolayer (SAM)-based benzoic acid derivatives such as 4-[5'-phenyl-2,2'-bitien-5-yl] benzoic acid (ZE-Ph), 4-[5'-(4-fluorophenyl)-2,2'-bitien-5-yl]benzoic acid (ZE-1F), and 4-[5'-(3,5-difluorophenyl)-2,2'-bitien-5-yl]benzoic acid (ZE-2F) were synthesized to use an interlayer between an ITO electrode and a MoO3 thin film layer in an organic solar cell (OSC) having poly-3 hexylthiophene (P3HT): [6,6]-phenyl C61 butyric acid methyl ester (PC61BM) blend. The work function and surface wetting properties of the ITO were tuned by SAM molecules. The power conversion efficiency of fabricated OSC devices was improved compared to that of the control device from 1.93 to 2.20% and 2.22% with ZE-Ph and ZE-1F-modified ITO electrodes, respectively. The short-circuit current density (Jsc) was increased from 6.16 to 7.10 mA/cm2 and 6.94 mA/cm2 with control, ZE-Ph, and ZE-1F-modified solar cells, respectively. The increase in short-circuit current density (Jsc) shows that the hole-transporting properties between ITO and MoO3 were improved by the use of ZE-Ph and ZE-1F compared with that of the ITO/MoO3 electrode configuration. The open-circuit voltage (Voc) of the SAM-modified ITO-based devices was also improved compared with the Voc of unmodified ITO-based devices. These results show that using a monolayer as an interlayer in OSCs is an important strategy to improve the performance of OSCs. All the device parameters were characterized by Kelvin probe force microscopy, cyclic voltammetry, contact angle, and I-V measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助Lucins采纳,获得10
1秒前
思源应助李柏桐采纳,获得10
1秒前
1秒前
开心书本发布了新的文献求助10
2秒前
传奇3应助annie采纳,获得10
2秒前
无极微光应助gustavo采纳,获得20
3秒前
LSPR完成签到,获得积分10
3秒前
3秒前
小马驹完成签到,获得积分20
3秒前
ab完成签到,获得积分10
3秒前
abbb发布了新的文献求助10
4秒前
4秒前
4秒前
LHQ发布了新的文献求助30
4秒前
xinxin发布了新的文献求助10
4秒前
汉堡包应助吉尼斯贝贝采纳,获得10
5秒前
木兮发布了新的文献求助10
5秒前
6秒前
cmuzf完成签到,获得积分10
6秒前
蓝茶发布了新的文献求助20
7秒前
7秒前
鲤鱼怜菡发布了新的文献求助100
7秒前
9秒前
整齐凌萱发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
12秒前
12秒前
卓延恶完成签到,获得积分10
12秒前
田様应助文龙采纳,获得10
12秒前
深情安青应助abbb采纳,获得10
13秒前
13秒前
xwh完成签到,获得积分10
14秒前
研友_ZGjaGn完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668336
求助须知:如何正确求助?哪些是违规求助? 4890477
关于积分的说明 15124001
捐赠科研通 4827230
什么是DOI,文献DOI怎么找? 2584560
邀请新用户注册赠送积分活动 1538422
关于科研通互助平台的介绍 1496699