iEEG‐recon: A fast and scalable pipeline for accurate reconstruction of intracranial electrodes and implantable devices

计算机科学 工作流程 可扩展性 模块化设计 管道(软件) 癫痫外科 人工智能 神经影像学 癫痫 计算机视觉 神经科学 数据库 心理学 程序设计语言 操作系统
作者
Alfredo Lucas,Brittany H. Scheid,Akash R. Pattnaik,Ryan S. Gallagher,Marissa Mojena,Ashley Tranquille,Brian Prager,Ezequiel Gleichgerrcht,Ruxue Gong,Brian Litt,Kathryn A. Davis,Sandhitsu R. Das,Joel M. Stein,Nishant Sinha
出处
期刊:Epilepsia [Wiley]
卷期号:65 (3): 817-829 被引量:6
标识
DOI:10.1111/epi.17863
摘要

Abstract Objective Clinicians use intracranial electroencephalography (iEEG) in conjunction with noninvasive brain imaging to identify epileptic networks and target therapy for drug‐resistant epilepsy cases. Our goal was to promote ongoing and future collaboration by automating the process of “electrode reconstruction,” which involves the labeling, registration, and assignment of iEEG electrode coordinates on neuroimaging. We developed a standalone, modular pipeline that performs electrode reconstruction. We demonstrate our tool's compatibility with clinical and research workflows and its scalability on cloud platforms. Methods We created iEEG‐recon, a scalable electrode reconstruction pipeline for semiautomatic iEEG annotation, rapid image registration, and electrode assignment on brain magnetic resonance imaging (MRI). Its modular architecture includes a clinical module for electrode labeling and localization, and a research module for automated data processing and electrode contact assignment. To ensure accessibility for users with limited programming and imaging expertise, we packaged iEEG‐recon in a containerized format that allows integration into clinical workflows. We propose a cloud‐based implementation of iEEG‐recon and test our pipeline on data from 132 patients at two epilepsy centers using retrospective and prospective cohorts. Results We used iEEG‐recon to accurately reconstruct electrodes in both electrocorticography and stereoelectroencephalography cases with a 30‐min running time per case (including semiautomatic electrode labeling and reconstruction). iEEG‐recon generates quality assurance reports and visualizations to support epilepsy surgery discussions. Reconstruction outputs from the clinical module were radiologically validated through pre‐ and postimplant T1‐MRI visual inspections. We also found that our use of ANTsPyNet deep learning‐based brain segmentation for electrode classification was consistent with the widely used FreeSurfer segmentations. Significance iEEG‐recon is a robust pipeline for automating reconstruction of iEEG electrodes and implantable devices on brain MRI, promoting fast data analysis and integration into clinical workflows. iEEG‐recon's accuracy, speed, and compatibility with cloud platforms make it a useful resource for epilepsy centers worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空谷新苗完成签到,获得积分10
刚刚
bkagyin应助阿豪采纳,获得10
1秒前
杪123完成签到,获得积分10
2秒前
科研通AI5应助ZD采纳,获得10
3秒前
研友_VZG7GZ应助刘胖胖采纳,获得10
3秒前
怡然的一凤完成签到,获得积分10
3秒前
贰晶完成签到 ,获得积分10
4秒前
4秒前
后来应助勤劳的筝采纳,获得10
4秒前
所所应助冰川流采纳,获得10
6秒前
6秒前
7秒前
8秒前
超级冰薇发布了新的文献求助30
9秒前
直率听云发布了新的文献求助10
9秒前
鱼人发布了新的文献求助10
10秒前
academician完成签到,获得积分10
10秒前
qiaozhi乔治发布了新的文献求助10
11秒前
11秒前
11秒前
爆米花应助半半采纳,获得10
12秒前
12秒前
xiyan发布了新的文献求助10
13秒前
赘婿应助年轻的听露采纳,获得10
13秒前
直率听云完成签到,获得积分10
14秒前
刘胖胖发布了新的文献求助10
15秒前
1111发布了新的文献求助10
15秒前
16秒前
17秒前
18秒前
CCC完成签到,获得积分10
19秒前
19秒前
CipherSage应助立军采纳,获得10
20秒前
丘比特应助甜甜世立采纳,获得10
21秒前
美好的从阳完成签到,获得积分20
21秒前
学术通zzz发布了新的文献求助10
21秒前
22秒前
amiable22发布了新的文献求助10
22秒前
刘胖胖完成签到,获得积分10
22秒前
阿龙完成签到,获得积分10
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814644
求助须知:如何正确求助?哪些是违规求助? 3358727
关于积分的说明 10397217
捐赠科研通 3076119
什么是DOI,文献DOI怎么找? 1689701
邀请新用户注册赠送积分活动 813195
科研通“疑难数据库(出版商)”最低求助积分说明 767532