Hollow Mesoporous Molybdenum Single-Atom Nanozyme-Based Reactor for Enhanced Cascade Catalytic Antibacterial Therapy

纳米反应器 葡萄糖氧化酶 纳米载体 催化作用 抗菌活性 葡萄糖酸 组合化学 体内 介孔材料 化学 材料科学 纳米技术 核化学 纳米颗粒 有机化学 细菌 生物传感器 生物技术 生物 遗传学
作者
Z Zhang,Tiehong Yang,Jingwei Wang,Zhe Yu,Youbei Qiao,Chaoli Wang,Zhenggang Yue,Hong Wu
出处
期刊:International Journal of Nanomedicine [Dove Medical Press]
卷期号:Volume 18: 7209-7223 被引量:4
标识
DOI:10.2147/ijn.s438278
摘要

The remarkable peroxidase-like activity of single-atom nanozymes (SAzymes) allows them to catalyze the conversion of H2O2 to •OH, rendering them highly promising for antibacterial applications. However, their practical in vivo application is hindered by the near-neutral pH and insufficient H2O2 levels present in physiological systems. This study was aimed at developing a SAzyme-based nanoreactor and investigating its in vivo antibacterial activity.We developed a hollow mesoporous molybdenum single-atom nanozyme (HMMo-SAzyme) using a controlled chemical etching approach and pyrolysis strategy. The HMMo-SAzyme not only exhibited excellent catalytic activity but also served as an effective nanocarrier. By loading glucose oxidase (GOx) with HMMo-SAzyme and encapsulating it with hyaluronic acid (HA), a nanoreactor (HMMo/GOx@HA) was constructed as glucose-triggered cascade catalyst for combating bacterial infection in vivo.Hyaluronidase (HAase) at the site of infection degraded HA, allowing GOx to convert glucose into gluconic acid and H2O2. An acid environment significantly enhanced the catalytic activity of HMMo-SAzyme to promote the further catalytic conversion of H2O2 to •OH for bacterial elimination. In vitro and in vivo experiments demonstrated that the nanoreactor had excellent antibacterial activity and negligible biological toxicity.This study represents a significant advancement in developing a cascade catalytic system with high efficiency based on hollow mesoporous SAzyme, promising the advancement of biological applications of SAzyme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SAODEN完成签到,获得积分10
1秒前
冰魂应助舒适路人采纳,获得10
2秒前
阿罗宁宁完成签到 ,获得积分10
2秒前
2秒前
Leon应助mujin采纳,获得10
3秒前
干净盼山完成签到,获得积分10
4秒前
4秒前
泠199完成签到,获得积分10
4秒前
4秒前
LArry完成签到,获得积分10
5秒前
5秒前
VitoLi发布了新的文献求助10
6秒前
汉堡包应助11采纳,获得10
7秒前
9秒前
木影忆发布了新的文献求助10
10秒前
10秒前
fffff发布了新的文献求助10
10秒前
随遇而安应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
智守奇安完成签到,获得积分10
14秒前
爆米花应助舒适路人采纳,获得10
14秒前
15秒前
15秒前
小海应助朱彤彤采纳,获得10
16秒前
深情安青应助啄春泥采纳,获得10
16秒前
Owen应助研友_ngX12Z采纳,获得10
17秒前
小远远发布了新的文献求助10
18秒前
wanidamm完成签到,获得积分10
20秒前
11发布了新的文献求助10
20秒前
3654289完成签到,获得积分10
22秒前
Dolbar关注了科研通微信公众号
24秒前
25秒前
洁净的雪一完成签到 ,获得积分10
25秒前
26秒前
科研通AI5应助舒适路人采纳,获得10
26秒前
科研通AI5应助欢呼阁采纳,获得10
27秒前
tu123完成签到,获得积分10
27秒前
Ava应助研友_ngX12Z采纳,获得10
30秒前
Jasper应助开朗元槐采纳,获得10
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784400
求助须知:如何正确求助?哪些是违规求助? 3329418
关于积分的说明 10242254
捐赠科研通 3044938
什么是DOI,文献DOI怎么找? 1671417
邀请新用户注册赠送积分活动 800346
科研通“疑难数据库(出版商)”最低求助积分说明 759342