BHAFT: Bayesian heredity‐constrained accelerated failure time models for detecting gene‐environment interactions in survival analysis

遗传 鉴定(生物学) 贝叶斯概率 计算机科学 协变量 机器学习 贝叶斯推理 人工智能 生物 遗传学 植物
作者
Na Sun,Jiadong Chu,Qida He,Yu Wang,Qiang Han,Nengjun Yi,Ruyang Zhang,Yueping Shen
出处
期刊:Statistics in Medicine [Wiley]
卷期号:43 (21): 4013-4026
标识
DOI:10.1002/sim.10145
摘要

In addition to considering the main effects, understanding gene-environment (G × E) interactions is imperative for determining the etiology of diseases and the factors that affect their prognosis. In the existing statistical framework for censored survival outcomes, there are several challenges in detecting G × E interactions, such as handling high-dimensional omics data, diverse environmental factors, and algorithmic complications in survival analysis. The effect heredity principle has widely been used in studies involving interaction identification because it incorporates the dependence of the main and interaction effects. However, Bayesian survival models that incorporate the assumption of this principle have not been developed. Therefore, we propose Bayesian heredity-constrained accelerated failure time (BHAFT) models for identifying main and interaction (M-I) effects with novel spike-and-slab or regularized horseshoe priors to incorporate the assumption of effect heredity principle. The R package rstan was used to fit the proposed models. Extensive simulations demonstrated that BHAFT models had outperformed other existing models in terms of signal identification, coefficient estimation, and prognosis prediction. Biologically plausible G × E interactions associated with the prognosis of lung adenocarcinoma were identified using our proposed model. Notably, BHAFT models incorporating the effect heredity principle could identify both main and interaction effects, which are highly useful in exploring G × E interactions in high-dimensional survival analysis. The code and data used in our paper are available at https://github.com/SunNa-bayesian/BHAFT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助赵赵赵采纳,获得10
刚刚
Akim应助简单灵凡采纳,获得10
刚刚
丁莞发布了新的文献求助10
1秒前
Lucy发布了新的文献求助10
1秒前
带线一去不回完成签到,获得积分10
1秒前
1秒前
梦想or现实完成签到,获得积分10
1秒前
2秒前
wyc完成签到,获得积分10
2秒前
1111222333发布了新的文献求助10
3秒前
ckk发布了新的文献求助10
3秒前
3秒前
王水苗完成签到,获得积分10
4秒前
无花果应助1212采纳,获得10
5秒前
5秒前
落落发布了新的文献求助10
5秒前
黄腾完成签到,获得积分10
5秒前
科研助手6应助青木蓝采纳,获得20
7秒前
7秒前
8秒前
小二郎应助无敌幸运儿采纳,获得10
8秒前
8秒前
hhye完成签到,获得积分20
8秒前
犹豫的稀完成签到,获得积分10
8秒前
科研圣体完成签到,获得积分20
9秒前
9秒前
我不完成签到,获得积分10
9秒前
9秒前
卡卡发布了新的文献求助30
10秒前
qiqi_smiling7关注了科研通微信公众号
10秒前
脑洞疼应助优美从菡采纳,获得10
10秒前
Yanran发布了新的文献求助10
11秒前
11秒前
5High_0发布了新的文献求助20
11秒前
科研通AI5应助sfaaeaadefef采纳,获得10
11秒前
Lucas应助薄饼哥丶采纳,获得10
12秒前
jk完成签到,获得积分10
13秒前
WZ0904完成签到 ,获得积分10
13秒前
Maxwell完成签到,获得积分10
13秒前
研友_VZG7GZ应助专注的易文采纳,获得10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794120
求助须知:如何正确求助?哪些是违规求助? 3339098
关于积分的说明 10293786
捐赠科研通 3055628
什么是DOI,文献DOI怎么找? 1676738
邀请新用户注册赠送积分活动 804705
科研通“疑难数据库(出版商)”最低求助积分说明 762047