Accurately Predicting Spatiotemporal Variations of Near-Surface Nitrous Acid (HONO) Based on a Deep Learning Approach

亚硝酸 环境科学 深度学习 人工智能 计算机科学 化学 无机化学
作者
Xuan Li,Can Ye,Keding Lu,Chaoyang Xue,Xin Li,Yuanhang Zhang
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (29): 13035-13046 被引量:13
标识
DOI:10.1021/acs.est.4c02221
摘要

Gaseous nitrous acid (HONO) is identified as a critical precursor of hydroxyl radicals (OH), influencing atmospheric oxidation capacity and the formation of secondary pollutants. However, large uncertainties persist regarding its formation and elimination mechanisms, impeding accurate simulation of HONO levels using chemical models. In this study, a deep neural network (DNN) model was established based on routine air quality data (O3, NO2, CO, and PM2.5) and meteorological parameters (temperature, relative humidity, solar zenith angle, and season) collected from four typical megacity clusters in China. The model exhibited robust performance on both the train sets [slope = 1.0, r2 = 0.94, root mean squared error (RMSE) = 0.29 ppbv] and two independent test sets (slope = 1.0, r2 = 0.79, and RMSE = 0.39 ppbv), demonstrated excellent capability in reproducing the spatiotemporal variations of HONO, and outperformed an observation-constrained box model incorporated with newly proposed HONO formation mechanisms. Nitrogen dioxide (NO2) was identified as the most impactful features for HONO prediction using the SHapely Additive exPlanation (SHAP) approach, highlighting the importance of NO2 conversion in HONO formation. The DNN model was further employed to predict the future change of HONO levels in different NOx abatement scenarios, which is expected to decrease 27-44% in summer as the result of 30-50% NOx reduction. These results suggest a dual effect brought by abatement of NOx emissions, leading to not only reduction of O3 and nitrate precursors but also decrease in HONO levels and hence primary radical production rates (PROx). In summary, this study demonstrates the feasibility of using deep learning approach to predict HONO concentrations, offering a promising supplement to traditional chemical models. Additionally, stringent NOx abatement would be beneficial for collaborative alleviation of O3 and secondary PM2.5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生动娩发布了新的文献求助10
1秒前
2秒前
2秒前
bean完成签到 ,获得积分10
5秒前
6秒前
现代姒发布了新的文献求助10
6秒前
小马甲应助ltt采纳,获得10
6秒前
毛毛完成签到,获得积分10
7秒前
愿qbj发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
10秒前
瘦瘦鸵鸟发布了新的文献求助10
12秒前
13秒前
13秒前
智者发布了新的文献求助10
14秒前
blue完成签到,获得积分10
14秒前
LYY关注了科研通微信公众号
14秒前
wanci应助小rao采纳,获得10
15秒前
板凳发布了新的文献求助10
15秒前
18秒前
愿qbj完成签到,获得积分10
18秒前
生动娩发布了新的文献求助10
19秒前
ohh发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
着急的青枫应助Ryy采纳,获得10
21秒前
俏皮短靴发布了新的文献求助20
22秒前
勤勤完成签到 ,获得积分10
25秒前
七木完成签到,获得积分10
25秒前
26秒前
唐静发布了新的文献求助10
26秒前
26秒前
执行正义完成签到,获得积分10
27秒前
香蕉完成签到 ,获得积分10
27秒前
我是老大应助瘦瘦鸵鸟采纳,获得10
27秒前
科目三应助Jian采纳,获得10
29秒前
31秒前
Lin发布了新的文献求助20
32秒前
无奈手套完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599407
求助须知:如何正确求助?哪些是违规求助? 4685010
关于积分的说明 14837502
捐赠科研通 4668037
什么是DOI,文献DOI怎么找? 2537906
邀请新用户注册赠送积分活动 1505398
关于科研通互助平台的介绍 1470783