Prioritization of Early-Stage Research and Development of a Hydrogel-Encapsulated Anaerobic Technology for Distributed Treatment of High Strength Organic Wastewater

优先次序 阶段(地层学) 废水 无氧运动 技术开发 废物管理 环境科学 计算机科学 生化工程 业务 工程类 过程管理 制造工程 生物 生理学 古生物学
作者
Xinyi Zhang,William A. Arnold,Natasha C. Wright,Paige J. Novak,Jeremy S. Guest
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.4c05389
摘要

This study aims to support the prioritization of research and development (R&D) pathways of an anaerobic technology leveraging hydrogel-encapsulated biomass to treat high-strength organic industrial wastewaters, enabling decentralized energy recovery and treatment to reduce organic loading on centralized treatment facilities. To characterize the sustainability implications of early-stage design decisions and to delineate R&D targets, an encapsulated anaerobic process model was developed and coupled with design algorithms for integrated process simulation, techno-economic analysis, and life cycle assessment under uncertainty. Across the design space, a single-stage configuration with passive biogas collection was found to have the greatest potential for financial viability and the lowest life cycle carbon emission. Through robust uncertainty and sensitivity analyses, we found technology performance was driven by a handful of design and technological factors despite uncertainty surrounding many others. Hydraulic retention time and encapsulant volume were identified as the most impactful design decisions for the levelized cost and carbon intensity of chemical oxygen demand (COD) removal. Encapsulant longevity, a technological parameter, was the dominant driver of system sustainability and thus a clear R&D priority. Ultimately, we found encapsulated anaerobic systems with optimized fluidized bed design have significant potential to provide affordable, carbon-negative, and distributed COD removal from high strength organic wastewaters if encapsulant longevity can be maintained at 5 years or above.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
胖达完成签到 ,获得积分10
2秒前
2秒前
JokerSkye发布了新的文献求助10
3秒前
3秒前
3秒前
领导范儿应助乌拉拉采纳,获得10
4秒前
5秒前
6秒前
康康发布了新的文献求助10
6秒前
科研通AI2S应助huang采纳,获得10
7秒前
7秒前
咻咻发布了新的文献求助10
7秒前
合适尔蝶发布了新的文献求助10
8秒前
在水一方应助个性若冰采纳,获得10
8秒前
所所应助Ray采纳,获得10
9秒前
简单面包完成签到,获得积分10
9秒前
9秒前
完美世界应助牧笛采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
打打应助猫小乐C采纳,获得10
15秒前
lunar完成签到 ,获得积分10
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
18秒前
18秒前
b11发布了新的文献求助10
20秒前
进击的巨人完成签到 ,获得积分10
20秒前
cjh关闭了cjh文献求助
20秒前
21秒前
bzlish发布了新的文献求助10
21秒前
23秒前
medmh完成签到,获得积分10
23秒前
眯眯眼的板栗完成签到,获得积分10
24秒前
jyjy完成签到 ,获得积分10
25秒前
26秒前
完美世界应助浅香千雪采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Co-Use of Alcohol and Cannabis: How Are They Related? 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5799295
求助须知:如何正确求助?哪些是违规求助? 5798781
关于积分的说明 15499670
捐赠科研通 4925751
什么是DOI,文献DOI怎么找? 2651626
邀请新用户注册赠送积分活动 1598681
关于科研通互助平台的介绍 1553565