Jaya algorithm hybridized with extreme gradient boosting to predict the corrosion-induced mass loss of agro-waste based monolithic and Ni-reinforced porous alumina

材料科学 Boosting(机器学习) 腐蚀 多孔性 梯度升压 复合材料 人工智能 计算机科学 随机森林
作者
T.T. Dele‐Afolabi,Dong Won Jung,Masoud Ahmadipour,Azmah Hanim Mohamed Ariff,Adeleke Abdulrahman Oyekanmi,M. Kandasamy,Prem Gunnasegaran
出处
期刊:Journal of materials research and technology [Elsevier]
卷期号:33: 5909-5921 被引量:3
标识
DOI:10.1016/j.jmrt.2024.10.221
摘要

Chemical attack is one of the most significant issues affecting porous ceramic systems employed as membranes for separation technologies, which necessitate frequent system reliability testing. In this work, the non-linear predictive power of a hybridized machine learning prediction model, specifically Jaya-XGBoost to predict the corrosion-induced mass loss of monolithic and nickel-reinforced porous alumina ceramics has been examined. This study demonstrates the mass loss of monolithic and Ni-reinforced porous alumina developed using rice husk and sugarcane bagasse in acidic and alkaline corrosive media. Based on empirical findings, the formation of a very stable Ni3Al2SiO8 spinelloid phase in the RH-graded composites increased their chemical stability in the corrosive environments compared to their monolithic and corresponding SCB-graded counterparts. Corrosion testing data of these specimens were collected and fitted into both XGBoost and Jaya-XGBoost machine learning algorithms. The results showed that the Jaya-XGBoost model performed better in predicting the corrosion-induced mass loss of both the monolithic and the nickel-reinforced porous alumina than the regular XGBoost model in terms of statistical accuracy measures. The Jaya-XGBoost model developed in this study effectively predicted the mass loss in NaOH (R2 = 0.9984; MAE = 0.0168) and mass loss in H2SO4 (R2 = 0.9824; MAE = 0.0217) of the monolithic and nickel-reinforced porous alumina. The precision that can be obtained by modifying hyper-parameters with the Jaya method, combined with the well-known accuracy of XGBoost, renders the proposed model novel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中级中级发布了新的文献求助10
1秒前
高源伯完成签到,获得积分10
2秒前
aikeyan完成签到,获得积分10
2秒前
JamesPei应助天和街浪子采纳,获得10
3秒前
NexusExplorer应助Leah采纳,获得10
3秒前
4秒前
4秒前
酷波er应助Xiao采纳,获得10
6秒前
6秒前
知否完成签到 ,获得积分0
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
aikeyan发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
10秒前
十月完成签到 ,获得积分10
11秒前
11秒前
kk完成签到,获得积分10
11秒前
喵喵喵完成签到 ,获得积分10
13秒前
邓焕然发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
555完成签到,获得积分10
14秒前
受伤芝麻完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
15秒前
16秒前
Asteroid发布了新的文献求助10
16秒前
无花果应助Yukikig采纳,获得10
17秒前
银鱼在游发布了新的文献求助10
18秒前
18秒前
所以Sun发布了新的文献求助10
20秒前
路人甲发布了新的文献求助10
20秒前
21秒前
天和街浪子完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597092
求助须知:如何正确求助?哪些是违规求助? 4682377
关于积分的说明 14826217
捐赠科研通 4659610
什么是DOI,文献DOI怎么找? 2536464
邀请新用户注册赠送积分活动 1504128
关于科研通互助平台的介绍 1470102