Understanding Episode Hardness in Few-Shot Learning

人工智能 弹丸 计算机科学 一次性 机器学习 模式识别(心理学) 材料科学 工程类 机械工程 冶金
作者
Yurong Guo,Ruoyi Du,Aneeshan Sain,Kongming Liang,Yuan Dong,Yi-Zhe Song,Zhanyu Ma
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-18
标识
DOI:10.1109/tpami.2024.3476075
摘要

Achieving generalization for deep learning models has usually suffered from the bottleneck of annotated sample scarcity. As a common way of tackling this issue, few-shot learning focuses on "episodes", i.e. sampled tasks that help the model acquire generalizable knowledge onto unseen categories - better the episodes, the higher a model's generalisability. Despite extensive research, the characteristics of episodes and their potential effects are relatively less explored. A recent paper discussed that different episodes exhibit different prediction difficulties, and coined a new metric "hardness" to quantify episodes, which however is too wide-range for an arbitrary dataset and thus remains impractical for realistic applications. In this paper therefore, we for the first time conduct an algebraic analysis of the critical factors influencing episode hardness supported by experimental demonstrations, that reveal episode hardness to largely depend on classes within an episode, and importantly propose an efficient pre-sampling hardness assessment technique named Inverse-Fisher Discriminant Ratio (IFDR). This enables sampling hard episodes at the class level via class-level (cl) sampling scheme that drastically decreases quantification cost. Delving deeper, we also develop a variant called class-pair-level (cpl) sampling, which further reduces the sampling cost while guaranteeing the sampled distribution. Finally, comprehensive experiments conducted on benchmark datasets verify the efficacy of our proposed method. Codes are available at: https://github.com/PRIS-CV/class-level-sampling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝色雨点完成签到,获得积分10
1秒前
iNk应助贪玩丸子采纳,获得20
1秒前
2秒前
万能图书馆应助张凤采纳,获得10
3秒前
4秒前
5秒前
deallyxyz完成签到 ,获得积分10
6秒前
YamDaamCaa应助xzy998采纳,获得200
6秒前
9秒前
干净怀寒发布了新的文献求助30
10秒前
可可发布了新的文献求助10
11秒前
刘润豪发布了新的文献求助30
11秒前
张凤发布了新的文献求助10
14秒前
清瞳完成签到,获得积分10
14秒前
爆米花应助旷野采纳,获得10
17秒前
研友_48yb3L完成签到,获得积分10
20秒前
丘比特应助武雨寒采纳,获得10
20秒前
英姑应助迷人雪一采纳,获得10
20秒前
张凤完成签到,获得积分10
21秒前
CipherSage应助研友_48yb3L采纳,获得10
26秒前
28秒前
about0731发布了新的文献求助10
29秒前
胡萝卜完成签到 ,获得积分10
30秒前
30秒前
烂漫大地完成签到,获得积分10
31秒前
31秒前
大洲完成签到 ,获得积分10
33秒前
旷野发布了新的文献求助10
33秒前
Ava应助大直采纳,获得10
34秒前
nnnnn发布了新的文献求助10
34秒前
北海未暖完成签到,获得积分10
37秒前
37秒前
39秒前
善学以致用应助about0731采纳,获得10
39秒前
鲤鱼平安完成签到,获得积分10
40秒前
彭于晏应助dal采纳,获得10
41秒前
lucky发布了新的文献求助10
42秒前
我不是BOB发布了新的文献求助10
44秒前
固的曼完成签到,获得积分10
46秒前
慕青应助平安喜乐采纳,获得10
47秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Ene—X Compounds (X = S, Se, Te, N, P) 300
Cysteine protease ervatamin-B-like-mediated spermatophore digestion and sperm release impair fertility of Plutella xylostella females 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4129050
求助须知:如何正确求助?哪些是违规求助? 3666189
关于积分的说明 11599075
捐赠科研通 3365005
什么是DOI,文献DOI怎么找? 1848958
邀请新用户注册赠送积分活动 912780
科研通“疑难数据库(出版商)”最低求助积分说明 828217