材料科学
纳米晶材料
晶格常数
合金
微晶
结构精修
扫描电子显微镜
球磨机
电阻率和电导率
分析化学(期刊)
衍射
相(物质)
结晶学
冶金
晶体结构
复合材料
纳米技术
化学
光学
物理
色谱法
电气工程
工程类
有机化学
作者
Florin Popa,Traian Florin Marinca,Niculina Sechel,Dan Frunză,I. Chicinaş
出处
期刊:Materials
[MDPI AG]
日期:2024-09-03
卷期号:17 (17): 4355-4355
被引量:1
摘要
Fe50Mn35Sn15 Heusler alloy, obtained by mechanical alloying, was subjected to larger milling times in the range of 30–50 h to study the phase stability and morphology. X-ray diffraction studies have shown that the milled samples crystallise in a disordered A2 structure. The A2 structure was found to be stable in the milling range studied, contrary to the computation studies performed on this composition. Using Rietveld refinements, the lattice parameter, mean crystallite size, and lattice strain were computed. The nature of the obtained phases by milling was found to be nanocrystalline with values below 50 nm. A linear increase rate of 0.00713 (h−1) was computed for lattice strain as the milling time increased. As the milling time increases, the lattice parameter of the cubic Heusler was found to have a decreasing behaviour, reaching 2.9517 Å at 50 h of milling. The morphological and elemental distribution—characterised by scanning electron microscopy and energy-dispersive X-ray spectroscopy—evidenced Mn and Sn phase clustering. As the milling time increased, the morphology of the sample was found to change. The Mn and Sn cluster size was quantified by elemental line profile. Electrical resistivity evolution with milling time was analysed, showing a peak for 40 h of milling time.
科研通智能强力驱动
Strongly Powered by AbleSci AI