The trRosetta server for fast and accurate protein structure prediction

蛋白质结构预测 计算机科学 蛋白质结构 结构生物学 计算生物学 生物信息学 细胞生物学 生物 生物化学
作者
Zongyang Du,Hong Su,Wenkai Wang,Lisha Ye,Hong Wei,Zhenling Peng,Ivan Anishchenko,David Baker,Jianyi Yang
出处
期刊:Nature Protocols [Nature Portfolio]
卷期号:16 (12): 5634-5651 被引量:568
标识
DOI:10.1038/s41596-021-00628-9
摘要

The trRosetta (transform-restrained Rosetta) server is a web-based platform for fast and accurate protein structure prediction, powered by deep learning and Rosetta. With the input of a protein's amino acid sequence, a deep neural network is first used to predict the inter-residue geometries, including distance and orientations. The predicted geometries are then transformed as restraints to guide the structure prediction on the basis of direct energy minimization, which is implemented under the framework of Rosetta. The trRosetta server distinguishes itself from other similar structure prediction servers in terms of rapid and accurate de novo structure prediction. As an illustration, trRosetta was applied to two Pfam families with unknown structures, for which the predicted de novo models were estimated to have high accuracy. Nevertheless, to take advantage of homology modeling, homologous templates are used as additional inputs to the network automatically. In general, it takes ~1 h to predict the final structure for a typical protein with ~300 amino acids, using a maximum of 10 CPU cores in parallel in our cluster system. To enable large-scale structure modeling, a downloadable package of trRosetta with open-source codes is available as well. A detailed guidance for using the package is also available in this protocol. The server and the package are available at https://yanglab.nankai.edu.cn/trRosetta/ and https://yanglab.nankai.edu.cn/trRosetta/download/ , respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
elf完成签到,获得积分20
刚刚
芳芳子呀完成签到,获得积分10
1秒前
miemie66完成签到,获得积分10
3秒前
慕青应助davidli采纳,获得10
4秒前
乐观紫霜完成签到,获得积分10
4秒前
风笛完成签到 ,获得积分10
5秒前
Zp完成签到,获得积分10
6秒前
刘丰完成签到 ,获得积分10
6秒前
乱世才子完成签到,获得积分10
8秒前
小青椒完成签到,获得积分0
9秒前
9秒前
整齐的电源完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助30
12秒前
起名字好难完成签到,获得积分10
12秒前
牧沛凝发布了新的文献求助10
15秒前
Xiang应助科研通管家采纳,获得10
16秒前
Xiang应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
eric888应助科研通管家采纳,获得20
16秒前
16秒前
科研通AI5应助科研通管家采纳,获得30
16秒前
eric888应助科研通管家采纳,获得20
16秒前
eric888应助科研通管家采纳,获得20
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
eric888应助科研通管家采纳,获得20
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
eric888应助科研通管家采纳,获得20
17秒前
在水一方应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
eric888应助科研通管家采纳,获得20
17秒前
17秒前
eric888应助科研通管家采纳,获得20
17秒前
华仔应助科研通管家采纳,获得30
17秒前
YANA完成签到,获得积分10
19秒前
charon完成签到 ,获得积分10
19秒前
CooL完成签到 ,获得积分10
19秒前
sunny完成签到,获得积分10
21秒前
hyt完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5055270
求助须知:如何正确求助?哪些是违规求助? 4281205
关于积分的说明 13341955
捐赠科研通 4097692
什么是DOI,文献DOI怎么找? 2243162
邀请新用户注册赠送积分活动 1249293
关于科研通互助平台的介绍 1179383