Quad-Contrast Imaging: Simultaneous Acquisition of Four Contrast-Weighted Images (PD-Weighted, T₂-Weighted, PD-FLAIR and T₂-FLAIR Images) With Synthetic T₁-Weighted Image, T₁- and T₂-Maps

作者
Sooyeon Ji,Jinhee Jeong,Se-Hong Oh,Yoonho Nam,Seung Hong Choi,Hyeong-Geol Shin,Dongmyung Shin,Woojin Jung,Jongho Lee
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (12): 3617-3626 被引量:8
标识
DOI:10.1109/tmi.2021.3093617
摘要

Magnetic resonance imaging (MRI) can provide multiple contrast-weighted images using different pulse sequences and protocols. However, a long acquisition time of the images is a major challenge. To address this limitation, a new pulse sequence referred to as quad-contrast imaging is presented. The quad-contrast sequence enables the simultaneous acquisition of four contrast-weighted images (proton density (PD)-weighted, T2-weighted, PD-fluid attenuated inversion recovery (FLAIR), and T2-FLAIR), and the synthesis of T1-weighted images and T1- and T2-maps in a single scan. The scan time is less than 6 min and is further reduced to 2 min 50 s using a deep learning-based parallel imaging reconstruction. The natively acquired quad contrasts demonstrate high quality images, comparable to those from the conventional scans. The deep learning-based reconstruction successfully reconstructed highly accelerated data (acceleration factor 6), reporting smaller normalized root mean squared errors (NRMSEs) and higher structural similarities (SSIMs) than those from conventional generalized autocalibrating partially parallel acquisitions (GRAPPA)-reconstruction (mean NRMSE of 4.36% vs. 10.54% and mean SSIM of 0.990 vs. 0.953). In particular, the FLAIR contrast is natively acquired and does not suffer from lesion-like artifacts at the boundary of tissue and cerebrospinal fluid, differentiating the proposed method from synthetic imaging methods. The quad-contrast imaging method may have the potentials to be used in a clinical routine as a rapid diagnostic tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助知然采纳,获得10
刚刚
生动板栗完成签到,获得积分10
1秒前
陈陈完成签到,获得积分10
2秒前
小小橙完成签到,获得积分20
3秒前
赘婿应助漂亮的千万采纳,获得10
4秒前
寒冷的夜梦完成签到,获得积分10
5秒前
5秒前
chrysophoron发布了新的文献求助10
6秒前
生动板栗发布了新的文献求助30
6秒前
6秒前
阿卡米星完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
科目三应助CharlieYue采纳,获得10
11秒前
轻松囧发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
lvanlvan完成签到 ,获得积分10
12秒前
所所应助聪慧烤鸡采纳,获得10
13秒前
长卿发布了新的文献求助10
13秒前
知然发布了新的文献求助10
14秒前
虚幻迎蕾发布了新的文献求助10
14秒前
14秒前
未顾完成签到,获得积分10
15秒前
微光熠发布了新的文献求助10
17秒前
元谷雪发布了新的文献求助10
17秒前
田様应助去码头整点薯条采纳,获得10
19秒前
20秒前
炸鸡叔完成签到,获得积分10
20秒前
浮游应助科研通管家采纳,获得10
21秒前
斯文败类应助科研通管家采纳,获得100
21秒前
墨薄凉完成签到 ,获得积分10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
丘比特应助sanL采纳,获得10
21秒前
丘比特应助科研通管家采纳,获得30
21秒前
汉堡包应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
英姑应助科研通管家采纳,获得10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695894
求助须知:如何正确求助?哪些是违规求助? 5103742
关于积分的说明 15217391
捐赠科研通 4852004
什么是DOI,文献DOI怎么找? 2602894
邀请新用户注册赠送积分活动 1554546
关于科研通互助平台的介绍 1512617