Varietal classification of maize seeds using computer vision and machine learning techniques

人工智能 支持向量机 阿达布思 计算机科学 机器学习 多层感知器 朴素贝叶斯分类器 模式识别(心理学) RGB颜色模型 图形用户界面 机器视觉 数学 人工神经网络 程序设计语言
作者
Peng Xu,Ranbing Yang,Tiwei Zeng,Jian Zhang,Yunpeng Zhang,Qian Tan
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:44 (11) 被引量:33
标识
DOI:10.1111/jfpe.13846
摘要

Abstract In agriculture, seed sorting is critical for production and marketing purposes. Low‐quality seeds can cause poor plant growth and lead to problems such as disease and low yields. This study uses machine vision and machine learning to develop a rapid detection and classification method for maize ( Zea mays L.) seeds based on variety purity. A computer vision system was designed to recognize five varieties of maize seeds. Halogen lamps were applied for illumination and a high‐resolution RGB camera was used to acquire images of 8,080 maize seeds in the laboratory. An image processing algorithm was proposed to extract 16 important features (12 dimensional and 4 of shape) from the maize seed images, and a user‐friendly interface was developed using a MATLAB graphical user interface (GUI). Multilayer perceptron (MLP), decision tree (DT), linear discrimination (LDA), Naive Bayes (NB), support vector machine (SVM), k ‐nearest neighbors (KNN), and AdaBoost algorithm were used to develop the varietal classification model. The optimal model parameters were obtained with 10‐fold cross‐validation, and the performance metrics were compared. The names of the maize varieties were marked in the GUI. The overall classification accuracy was determined as 96.26, 94.95, 95.97, 93.97, 96.46, 95.59, and 95.31% for MLP, DT, LDA, NB, SVM, KNN, and AdaBoost, respectively. The SVM classification model obtained the highest accuracy for BaoQiu, ShanCu, XinNuo, LiaoGe, and KouXian varieties, which reached 93.07, 98.95, 96.15, 89.65, and 99.22%, respectively. The classification results satisfy the needs of producers and consumers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只蓉馍馍完成签到,获得积分10
1秒前
natianhao完成签到,获得积分10
3秒前
cqnuly发布了新的文献求助30
4秒前
4秒前
5秒前
Orange应助火星上蜗牛采纳,获得10
6秒前
peiqi佩奇完成签到,获得积分10
7秒前
Andy完成签到,获得积分10
8秒前
zhaopeipei完成签到,获得积分10
9秒前
Lee完成签到,获得积分10
10秒前
求学狗完成签到 ,获得积分10
10秒前
10秒前
momo完成签到,获得积分10
10秒前
11秒前
Bin_Liu发布了新的文献求助10
13秒前
大大的寄吧完成签到,获得积分10
14秒前
14秒前
浮游应助Len采纳,获得10
15秒前
小詹完成签到,获得积分20
16秒前
蟒玉朝天完成签到 ,获得积分10
16秒前
青云天发布了新的文献求助10
17秒前
劣根完成签到,获得积分10
17秒前
所所应助kun采纳,获得10
17秒前
18秒前
小小阿杰完成签到,获得积分10
18秒前
你喝不喝娃哈哈完成签到 ,获得积分10
19秒前
嗯嗯完成签到,获得积分10
19秒前
田様应助林泽华采纳,获得10
19秒前
我独舞完成签到 ,获得积分10
21秒前
累哥完成签到,获得积分20
21秒前
Christine发布了新的文献求助30
22秒前
asahi发布了新的文献求助10
23秒前
铁匠完成签到,获得积分10
23秒前
25秒前
在水一方应助华北走地鸡采纳,获得10
25秒前
我是老大应助青云天采纳,获得10
26秒前
随意蚂蚁完成签到,获得积分10
28秒前
jincen发布了新的文献求助10
29秒前
29秒前
骡子发布了新的文献求助30
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306048
求助须知:如何正确求助?哪些是违规求助? 4451900
关于积分的说明 13853368
捐赠科研通 4339433
什么是DOI,文献DOI怎么找? 2382558
邀请新用户注册赠送积分活动 1377532
关于科研通互助平台的介绍 1345147