Marine Animal Segmentation

计算机科学 人工智能 分割 比例(比率) 模式识别(心理学) 地图学 地理
作者
Lin Li,Bo Dong,Eric Rigall,Tao Zhou,Junyu Dong,Geng Chen
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (4): 2303-2314 被引量:31
标识
DOI:10.1109/tcsvt.2021.3093890
摘要

In recent years, marine animal study has gained increasing research attention, which raises significant demands for fine-grained marine animal segmentation (MAS) techniques. In addition, deep learning has been widely adopted for object segmentation and has achieved promising performance. However, deep-based MAS is still lack of investigation due to the shortage of a large-scale MAS dataset. To tackle this issue, we construct the first large-scale MAS dataset, called MAS3K , which consists of 3,103 images from different types, including camouflaged marine animal images, common marine animal images, and underwater images without marine animals. Furthermore, we consider different underwater conditions, such as low illumination, turbid water quality, photographic distortion, etc. Each image from MAS3K dataset has rich annotations, including an object-level mask, a category name, attributes, and a camouflage method (if applicable). Furthermore, we propose a novel MAS network, called Enhanced Cascade Decoder Network ( ECD-Net ), which consists of multiple Interactive Feature Enhancement Modules (IFEMs) and Cascade Decoder Modules (CDMs). In ECD-Net , the IFEMs are first utilized to extract rich multi-scale features. The resulting features are then fed to the CDMs for accurately segmenting marine animals from complex underwater environments. We perform extensive experiments to compare ECD-Net with 10 cutting-edge object segmentation models. The results demonstrate that ECD-Net is an effective MAS model and outperforms the cutting-edge models, both qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小浪浪发布了新的文献求助10
3秒前
HotnessK完成签到,获得积分10
9秒前
wanci应助纯情的心情采纳,获得10
11秒前
顺利毕业完成签到,获得积分10
12秒前
领导范儿应助路痴采纳,获得10
12秒前
浩二发布了新的文献求助10
14秒前
16秒前
活力听兰完成签到,获得积分10
18秒前
18秒前
18秒前
hzl发布了新的文献求助10
21秒前
雪白雪糕发布了新的文献求助10
23秒前
老陈发布了新的文献求助10
23秒前
情怀应助柯南采纳,获得10
24秒前
26秒前
可爱的函函应助Yh_alive采纳,获得10
27秒前
倪妮发布了新的文献求助20
28秒前
科研通AI5应助呼呼呼采纳,获得10
29秒前
30秒前
雪白雪糕完成签到,获得积分10
31秒前
科研通AI5应助天天向上采纳,获得30
31秒前
儒雅沛凝完成签到 ,获得积分10
33秒前
34秒前
34秒前
34秒前
LJYii发布了新的文献求助10
35秒前
黑摄会阿Fay完成签到 ,获得积分10
35秒前
35秒前
pluto应助尤静柏采纳,获得10
36秒前
37秒前
Yh_alive发布了新的文献求助10
38秒前
ztayx完成签到 ,获得积分10
39秒前
路痴发布了新的文献求助10
39秒前
Li发布了新的文献求助10
40秒前
42秒前
42秒前
慕青应助科研通管家采纳,获得10
42秒前
科研通AI5应助科研通管家采纳,获得10
43秒前
星辰大海应助科研通管家采纳,获得30
43秒前
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780043
求助须知:如何正确求助?哪些是违规求助? 3325422
关于积分的说明 10222930
捐赠科研通 3040579
什么是DOI,文献DOI怎么找? 1668903
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758614