Automated training dataset collection system design for machine learning application in optical networks: an example of quality of transmission estimation

计算机科学 数字信号处理 电子工程 传输(电信) 波分复用 噪音(视频) 人工智能 电信 工程类 计算机硬件 光学 波长 图像(数学) 物理
作者
Jianing Lu,Qirui Fan,Gai Zhou,Linyue Lu,Changyuan Yu,Alan Pak Tao Lau,Chao Lü
出处
期刊:Journal of Optical Communications and Networking [The Optical Society]
卷期号:13 (11): 289-289 被引量:17
标识
DOI:10.1364/jocn.431780
摘要

Applications of machine learning (ML) models in optical communications and networks have been extensively investigated. For an optical wavelength-division-multiplexing (WDM) system, the quality of transmission (QoT) estimation generally depends on many parameters including the number and arrangement of WDM channels; launch power of each channel; number and distribution of fiber spans; attenuation, dispersion, and nonlinearity parameters and length of each fiber span; noise figure; gain and gain tilt of erbium-doped fiber amplifiers; transceiver noise; digital signal processing (DSP) performance; and so on. In recent years, ML-based QoT estimation schemes have gained significant attention. However, nearly all relevant works are conducted through simulations because it is difficult to obtain sufficient and high-quality datasets for training ML models. In this paper, we demonstrate completely automated generation and collection of an ultra-large-scale experimental training dataset for ML-model-based QoT estimation by automation of transceivers and optical link parameters, as well as data transfer and DSP. Implementation details and key codes of automation are presented. Artificial neural network models with one and two hidden layers are trained by the collected dataset, and brief QoT estimation results are evaluated and discussed to verify the performance and stability of the established automated system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁逍遥完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
2秒前
2秒前
小马甲应助无情谷梦采纳,获得10
2秒前
2秒前
朴素爆米花完成签到,获得积分10
3秒前
22333完成签到,获得积分10
3秒前
郭氧化氢发布了新的文献求助10
3秒前
Cker完成签到,获得积分10
3秒前
shatoni发布了新的文献求助10
4秒前
直立行走完成签到,获得积分10
5秒前
YW发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
正直夜安发布了新的文献求助10
6秒前
阔达紫青应助future采纳,获得10
6秒前
6秒前
6秒前
7秒前
郭文琦完成签到,获得积分10
7秒前
ewmmel发布了新的文献求助10
7秒前
思源应助美好越彬采纳,获得10
8秒前
方圆发布了新的文献求助10
8秒前
9秒前
tianhualefei发布了新的文献求助10
9秒前
9秒前
大个应助虚拟的香芦采纳,获得10
9秒前
兔兔要睡觉完成签到,获得积分10
10秒前
魔幻的斑马完成签到,获得积分10
11秒前
赘婿应助马库拉格采纳,获得10
11秒前
不喝可乐发布了新的文献求助10
12秒前
YW完成签到,获得积分10
12秒前
eaea007发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4492519
求助须知:如何正确求助?哪些是违规求助? 3945903
关于积分的说明 12235828
捐赠科研通 3603141
什么是DOI,文献DOI怎么找? 1981637
邀请新用户注册赠送积分活动 1018424
科研通“疑难数据库(出版商)”最低求助积分说明 911135