Machine learning and in-silico screening of metal–organic frameworks for O2/N2 dynamic adsorption and separation

吸附 金属有机骨架 分离(统计) 气体分离 材料科学 扩散 工艺工程 化学 纳米技术 计算机科学 热力学 有机化学 机器学习 工程类 物理 生物化学
作者
Yaling Yan,Zenan Shi,Huilin Li,Lifeng Li,Xiao Yang,Shuhua Li,Hong Liang,Zhiwei Qiao
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:427: 131604-131604 被引量:53
标识
DOI:10.1016/j.cej.2021.131604
摘要

It remains a great challenge to separate O2 from N2 at room temperature. Pressure swing adsorption (PSA) technology is a potential candidate, and the development of high-efficiency adsorbents for O2/N2 separation at room temperature has attracted a great deal of interest. In this work, machine learning (ML)-assisted high-throughput computational screening (HTCS) techniques were performed to screen the dynamic adsorption of O2 and N2 in 6,013 computation-ready experimental metal–organic frameworks (CoRE-MOFs), including the competitive adsorption of O2 and the diffusion of pure N2 and O2, to identify the best materials for O2/N2 separation. First, based on HTCS, we established the relationships between the structural/energetic descriptors with the performance indicators. Three machine learning (ML) algorithms were then applied to predict the performance indicators of MOFs. In addition, the relative importance of the structural/energetic descriptors and metal center type in MOFs toward the separation performance was evaluated, indicating that the metal center type of MOFs is a key factor for the separation of O2/N2. Transition metal elements were determined to have highest importance by ML. Moreover, the 13 best MOFs were identified for the dynamic adsorption of O2 from the air. Finally, three types of design strategies could significantly improve the performance of MOFs, such as regulating the topology and alternating the metal node and organic linker. The combination of HTCS, ML, and design strategies from bottom to top provide powerful microscopic insights for the development of MOF adsorbents for the separation of O2 at room temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wahhhlt完成签到,获得积分20
1秒前
3秒前
Azhou应助奈何采纳,获得30
4秒前
黑旋风发布了新的文献求助10
5秒前
远志发布了新的文献求助10
7秒前
7秒前
共享精神应助nml采纳,获得10
7秒前
8秒前
9秒前
桐桐应助koitoyu采纳,获得10
10秒前
称心花生发布了新的文献求助10
10秒前
丘比特应助黑旋风采纳,获得10
11秒前
秦杨发布了新的文献求助10
12秒前
Endeavor发布了新的文献求助10
12秒前
竹筏过海应助科研通管家采纳,获得30
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
拼搏的潘子完成签到 ,获得积分10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
满意凡桃发布了新的文献求助10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得30
13秒前
田様应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得20
13秒前
华仔应助科研通管家采纳,获得30
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
饱满的百招完成签到 ,获得积分10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得30
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
16秒前
16秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801867
求助须知:如何正确求助?哪些是违规求助? 3347688
关于积分的说明 10334678
捐赠科研通 3063810
什么是DOI,文献DOI怎么找? 1682125
邀请新用户注册赠送积分活动 807916
科研通“疑难数据库(出版商)”最低求助积分说明 763969