An online driver behavior adaptive shift strategy for two-speed AMT electric vehicle based on dynamic corrected factor

计算机科学 人工神经网络 过程(计算) 反向传播 模拟 人工智能 操作系统
作者
Xinyou Lin,Yalong Li,Bin Xia
出处
期刊:Sustainable Energy Technologies and Assessments [Elsevier BV]
卷期号:48: 101598-101598 被引量:9
标识
DOI:10.1016/j.seta.2021.101598
摘要

The performance of the shift strategy can reduce the energy consumption of two automatic manual transmissions (AMT) electric vehicles while meeting the needs of various drivers. Hence, the adjustment of the shift strategy is complicated due to the uncertain driver behavior. To address the above issue, an online driver behavior adaptive shift strategy based on dynamic corrected factors is proposed. Firstly, the simplified models of the power system and conventional shift strategies are constructed for electric vehicles. Secondly, principal component analysis and k-means algorithms are implemented to classify driver styles. Next, Learning Vector Quantization neural network and Fuzzy neural network are applied to identifying driving style and driving intention in real-time. Then, according to the driver behavior, a dynamic corrected factor is introduced. The dynamic corrected factors of different driver styles are modified to adjust the proportion of power and economy in the shifting process. As a result, the proposed shift strategy based on dynamic corrected factors achieves a compromise between power and economy for two-speed AMT electric vehicles. The numerical validation results demonstrate that the proposed shift strategy is energy-saving compared with the conventional shift strategy and can satisfy the requirements of various driver styles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
典雅浩轩完成签到,获得积分10
1秒前
大方的依霜完成签到,获得积分10
1秒前
胡杨柳完成签到,获得积分10
1秒前
于忠波发布了新的文献求助20
2秒前
眯眯眼的乐安完成签到 ,获得积分10
2秒前
Orange应助美丽的又菡采纳,获得10
2秒前
TANGTANG完成签到,获得积分20
2秒前
英勇真发布了新的文献求助10
3秒前
3秒前
雪白的幻枫完成签到 ,获得积分10
4秒前
4秒前
菠菜菜str完成签到,获得积分10
4秒前
杭问兰发布了新的文献求助10
4秒前
马志蕊给马志蕊的求助进行了留言
4秒前
大气沛槐完成签到,获得积分10
5秒前
211完成签到 ,获得积分10
5秒前
6秒前
烟花应助冬天该很好采纳,获得10
6秒前
贾明灵完成签到,获得积分10
6秒前
6秒前
popooo完成签到,获得积分10
6秒前
GGbond完成签到,获得积分10
7秒前
7秒前
小熙完成签到 ,获得积分10
7秒前
8秒前
genghailun发布了新的文献求助10
8秒前
54489完成签到,获得积分10
8秒前
天天向上发布了新的文献求助30
8秒前
Zoe完成签到,获得积分10
9秒前
科研通AI5应助于忠波采纳,获得10
9秒前
10秒前
LL发布了新的文献求助10
10秒前
didi完成签到,获得积分10
10秒前
wch完成签到,获得积分20
11秒前
出保函费完成签到,获得积分10
11秒前
12秒前
研友_Z6WWQ8完成签到,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785057
求助须知:如何正确求助?哪些是违规求助? 3330436
关于积分的说明 10246107
捐赠科研通 3045806
什么是DOI,文献DOI怎么找? 1671735
邀请新用户注册赠送积分活动 800750
科研通“疑难数据库(出版商)”最低求助积分说明 759644