A Survey of Sim-to-Real Transfer Techniques Applied to Reinforcement Learning for Bioinspired Robots

强化学习 人工智能 机器人 计算机科学 范围(计算机科学) 运动学 机器学习 学习迁移 控制工程 工程类 经典力学 物理 程序设计语言
作者
Wei Zhu,Xian Guo,Dai Owaki,Kyo Kutsuzawa,Mitsuhiro Hayashibe
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 3444-3459 被引量:60
标识
DOI:10.1109/tnnls.2021.3112718
摘要

The state-of-the-art reinforcement learning (RL) techniques have made innumerable advancements in robot control, especially in combination with deep neural networks (DNNs), known as deep reinforcement learning (DRL). In this article, instead of reviewing the theoretical studies on RL, which were almost fully completed several decades ago, we summarize some state-of-the-art techniques added to commonly used RL frameworks for robot control. We mainly review bioinspired robots (BIRs) because they can learn to locomote or produce natural behaviors similar to animals and humans. With the ultimate goal of practical applications in real world, we further narrow our review scope to techniques that could aid in sim-to-real transfer. We categorized these techniques into four groups: 1) use of accurate simulators; 2) use of kinematic and dynamic models; 3) use of hierarchical and distributed controllers; and 4) use of demonstrations. The purposes of these four groups of techniques are to supply general and accurate environments for RL training, improve sampling efficiency, divide and conquer complex motion tasks and redundant robot structures, and acquire natural skills. We found that, by synthetically using these techniques, it is possible to deploy RL on physical BIRs in actuality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ctyyyu发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
阳光的巧荷完成签到,获得积分10
刚刚
刚刚
情怀应助MengpoZhao采纳,获得10
刚刚
刚刚
诺z完成签到,获得积分10
刚刚
KL完成签到,获得积分10
刚刚
刚刚
xiaoshuwang发布了新的文献求助30
1秒前
bkagyin应助yy采纳,获得10
1秒前
1秒前
2秒前
2秒前
FashionBoy应助鲤鱼采纳,获得10
2秒前
FashionBoy应助杨洋采纳,获得10
3秒前
4秒前
思源应助666采纳,获得10
4秒前
5秒前
oip1799完成签到 ,获得积分10
5秒前
sszxlijin完成签到,获得积分10
5秒前
xiao发布了新的文献求助10
5秒前
shuogesama发布了新的文献求助10
5秒前
zhyi完成签到,获得积分10
6秒前
phl完成签到,获得积分10
6秒前
搜集达人应助yuan采纳,获得10
6秒前
机智毛豆完成签到,获得积分10
6秒前
7秒前
7秒前
yao发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助30
7秒前
蒜香炒田鸡完成签到,获得积分10
7秒前
大模型应助Savannah采纳,获得10
7秒前
7秒前
7秒前
粗暴的乐巧完成签到,获得积分10
7秒前
7秒前
万能图书馆应助夹心采纳,获得10
7秒前
yu发布了新的文献求助30
7秒前
科目三应助宇月幸成采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719773
求助须知:如何正确求助?哪些是违规求助? 5257547
关于积分的说明 15289528
捐赠科研通 4869516
什么是DOI,文献DOI怎么找? 2614832
邀请新用户注册赠送积分活动 1564816
关于科研通互助平台的介绍 1522006