亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modeling Car-Following Behavior on Freeways Considering Driving Style

驾驶模拟器 模拟 推论 计算机科学 汽车工程 工程类 人工智能
作者
Peng Sun,Xuesong Wang,Meixin Zhu
出处
期刊:Journal of transportation engineering [American Society of Civil Engineers]
卷期号:147 (12) 被引量:15
标识
DOI:10.1061/jtepbs.0000584
摘要

To build more accurate and realistic freeway car-following models, driving characteristics specific to freeway car following should be considered. This study, therefore, analyzed three car-following models calibrated for different driving styles. A total of 5,900 freeway car-following events were extracted from 161,055 km of driving data collected in the Shanghai Naturalistic Driving Study (SH-NDS) database. Based on the fuzzy inference system built in this study, these car-following events were categorized as representing one of two styles: nonaggressive or aggressive. The two driving styles were visualized by using the t-distributed stochastic neighbor embedding (t-SNE) algorithm. The Gipps, Wiedemann, and intelligent driver model (IDM) car-following models were calibrated and validated for each driving style group. Using a genetic algorithm to analyze the calibrated parameters of the investigated car-following models, it was found that the model parameter values were related to driving style. When their performances were evaluated, results showed that the IDM performed best. The nonaggressive IDM and the aggressive IDM were used to simulate the car-following scenarios based on the same leading vehicle trajectories. The t-test and the F-test results showed that regarding both time gap and spacing gap, the differences of mean and variance are significant between aggressive and nonaggressive styles in nearly all of the simulated car-following scenarios. The mean spacing gap (nonaggressive: 38 m; aggressive: 30 m) and time gap (nonaggressive: 1.7 s; aggressive: 1.4 s) obtained from modeled car-following scenarios could be used directly in simulation software to show the characteristics of different driving styles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
P_Chem完成签到,获得积分10
15秒前
22秒前
lin发布了新的文献求助10
28秒前
lin完成签到,获得积分10
49秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
岸在海的深处完成签到 ,获得积分10
2分钟前
yangquanquan完成签到,获得积分10
2分钟前
Everything完成签到,获得积分10
3分钟前
KINGAZX完成签到 ,获得积分10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
简时完成签到 ,获得积分10
3分钟前
科研通AI5应助woods采纳,获得10
4分钟前
4分钟前
woods发布了新的文献求助10
4分钟前
webmaster完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
无花果应助yangL采纳,获得10
5分钟前
Lucas应助waresi采纳,获得30
6分钟前
6分钟前
waresi发布了新的文献求助30
6分钟前
6分钟前
6分钟前
大个应助忧心的白羊采纳,获得10
7分钟前
7分钟前
rrrrrrry发布了新的文献求助10
7分钟前
嗯嗯完成签到 ,获得积分10
7分钟前
yangL完成签到,获得积分10
7分钟前
8分钟前
8分钟前
kinmke发布了新的文献求助10
8分钟前
yangL发布了新的文献求助10
8分钟前
kinmke完成签到,获得积分10
8分钟前
上官若男应助张佳明采纳,获得10
8分钟前
wei jie完成签到 ,获得积分10
8分钟前
8分钟前
张佳明发布了新的文献求助10
8分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847718
求助须知:如何正确求助?哪些是违规求助? 3390423
关于积分的说明 10561548
捐赠科研通 3110793
什么是DOI,文献DOI怎么找? 1714535
邀请新用户注册赠送积分活动 825272
科研通“疑难数据库(出版商)”最低求助积分说明 775453