Improving crack segmentation with noise-augmented training: model comparison and robustness evaluation on custom dataset

稳健性(进化) 分割 人工智能 计算机科学 水准点(测量) 交叉口(航空) 图像分割 深度学习 模式识别(心理学) 噪音(视频) 计算机视觉 机器学习 数据挖掘 试验数据 训练集 工程类 尺度空间分割
作者
Haoran Liu,Xiulong Sun,Shiying Liu,Shucheng Yuan,Wei Liang
出处
期刊:International Journal of Structural Integrity [Emerald (MCB UP)]
卷期号:: 1-23
标识
DOI:10.1108/ijsi-10-2025-0277
摘要

Purpose With the rapid advancement of computer vision and deep learning, crack detection has transitioned from manual inspection to automated approaches. However, challenges such as varying illumination and environmental noise continue to hinder detection accuracy. This study aims to enhance crack segmentation performance and robustness under complex imaging conditions through noise-augmented training and rigorous model comparison. Design/methodology/approach Noise-augmented versions of public benchmark datasets were employed to train selected segmentation models, thereby enhancing their robustness to illumination variations and noise interference. To evaluate model generalization, a challenging dataset containing 434 images featuring diverse infrastructure types and camera angles was constructed. Two deep learning frameworks, DeepLabv3+ and SegNet, were implemented with various pre-trained backbones, resulting in seven distinct architectures, such as DeepLabv3+Inception-ResNet-v2, for comparative performance analysis. Findings Models trained on noise-augmented datasets exhibited notable improvements in Mean Intersection over Union (MIoU) and F1-score compared with their non-augmented counterparts. Specifically, the DeepLabv3+Inception-ResNet-v2 model achieved the most significant progress and the best overall performance, demonstrating respective increases of 0.7% in Accuracy, 3.2% in Recall, 15.3% in Precision, 4.4% in F1-score and 5.0% in MIoU on the test set. Furthermore, evaluation on the 434-image dataset confirmed the model's high robustness. Originality/value These findings indicate that the proposed network, DeepLabv3+Inception-ResNet-v2, has strong potential for crack segmentation tasks in basic infrastructure, suggesting its applicability in real-world engineering scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
3秒前
3秒前
平城落叶完成签到,获得积分10
4秒前
5秒前
尹幼蓉发布了新的文献求助10
5秒前
6秒前
6秒前
半柚发布了新的文献求助10
8秒前
9秒前
张WT发布了新的文献求助10
9秒前
辣椒小皇纸完成签到 ,获得积分10
9秒前
10秒前
11秒前
12秒前
hp发布了新的文献求助10
13秒前
14秒前
森森发布了新的文献求助10
15秒前
15秒前
16秒前
Xx完成签到 ,获得积分10
16秒前
hz完成签到,获得积分10
16秒前
hongw_liu完成签到,获得积分10
17秒前
18秒前
Evan发布了新的文献求助10
18秒前
yjdjskd123完成签到 ,获得积分10
19秒前
21秒前
只只发布了新的文献求助10
21秒前
无名应助十六日呀采纳,获得10
21秒前
22秒前
时间纬度完成签到,获得积分10
22秒前
古月完成签到 ,获得积分20
23秒前
科目三应助刻苦藏今采纳,获得200
23秒前
Lucas应助复杂的访波采纳,获得10
23秒前
26秒前
窦鞅发布了新的文献求助10
26秒前
自由的柠檬完成签到 ,获得积分10
26秒前
27秒前
蟹蟹发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638333
求助须知:如何正确求助?哪些是违规求助? 4745373
关于积分的说明 15002092
捐赠科研通 4796488
什么是DOI,文献DOI怎么找? 2562649
邀请新用户注册赠送积分活动 1521998
关于科研通互助平台的介绍 1481834