材料科学
电解质
化学工程
电化学
制作
电极
化学稳定性
单层
电导率
纳米复合材料
金属
纳米技术
惰性
离子电导率
降级(电信)
表面改性
离子液体
阳极
图层(电子)
泥浆
过渡金属
无机化学
电化学窗口
电化学电池
堆栈(抽象数据类型)
过电位
容量损失
电池(电)
离子键合
电化学电位
铂金
有机自由基电池
作者
Hyeong-Seok Lee,Sumin Ko,Soo-Jin Park,Sang Min Lee
标识
DOI:10.1002/aenm.202503019
摘要
Abstract Achieving chemical and electrochemical stability of sulfide‐based solid electrolytes is crucial for enabling practical slurry fabrication and reliable operation of all‐solid‐state batteries (ASSBs). Herein, a fluorocarbon‐terminated self‐assembled monolayer (SAM) strategy is reported that forms a conformal and chemically inert surface on Li 6 PS 5 Cl (LPSCl), yielding a stabilized catholyte (─CF 3 @LPSCl) compatible with polar solvent‐based processing. The SAM layer effectively suppresses nucleophilic degradation induced by ester solvents and moisture while maintaining the crystalline bulk structure and high ionic conductivity of LPSCl. The surface fluorination simultaneously enhances both chemical and electrochemical stability, characterized by X‐ray absorption near‐edge structure measurements, enabling high‐rate capability and stable cycling under 1.0 C conditions. Under low stack pressure (≈0.3 MPa), the ─CF 3 @LPSCl catholyte suppresses not only the catholyte degradation but also alleviates mechanical contact loss within the cathode, achieving superior cycling stability without reliance on binder reinforcement. Notably, full cells assembled with thin Li metal and a low N/P ratio exhibit 90.5% capacity retention over 300 cycles. This work demonstrates that a simple but straightforward fabrication of surface‐stable catholyte—beyond binder and electrode engineering—can play a decisive role in achieving scalable and pressure‐tolerant ASSBs platforms.
科研通智能强力驱动
Strongly Powered by AbleSci AI