Hypocapnia Stimuli-Responsive Engineered Exosomes Delivering miR-218 Facilitate Sciatic Nerve Regeneration

微泡 再生(生物学) 坐骨神经 旁分泌信号 细胞生物学 外体 小RNA 神经科学 医学
作者
Yusheng Wang,Tao Yu,Feihu Hu
出处
期刊:Frontiers in Bioengineering and Biotechnology [Frontiers Media]
卷期号:10
标识
DOI:10.3389/fbioe.2022.825146
摘要

Therapeutic strategies of microRNAs (miRNAs) and exosomes have been systematically explored as an enhancing application by paracrine and modulating cellular activity after internalization of recipient cells in vitro , and progressively developed to meet the requirements of peripheral nerve regeneration in vivo . However, how to obtain exosomes with superior properties and effectively deliver miRNAs becomes a key challenge. Hypocapnia environment might play unexpected outcomes in strengthening exosome function when culturing adipose-derived stem cells (ASCs). Previously, we discovered the intensive regulation of miR-218 on the differentiation of ASCs. In the present study, we analyzed the functional differences of secreted exosomes in response to hypocapnia stimulation, and explored the application in combination with miR-218 to facilitate sciatic nerve regeneration. Our results indicated that the delivery system of engineered exosomes derived from ASCs remarkably loads upregulated miR-218 and promotes cellular activity in the recipient cells (PC12 cells), and hypocapnia stimuli-responsive exosomes exhibit strengthening properties. Furthermore, in a sciatic nerve injury model, exosomes delivering miR-218 combined with engineered scaffold facilitated the regeneration of injured sciatic nerves. In the hypocapnia-stimulated exosome group, more encouraging promotion was revealed on the regeneration of motor and nerve fibers. Hypoc-miR-218-ASC exosomes are suggested as a promising cell-free strategy for peripheral nerve repair.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿达是的完成签到,获得积分10
刚刚
生动忆灵关注了科研通微信公众号
刚刚
吉祥财子完成签到,获得积分10
刚刚
冰魂应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
冰魂应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得30
1秒前
慕青应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
OIIII应助科研通管家采纳,获得40
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
Gao完成签到,获得积分10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
log发布了新的文献求助10
2秒前
乐观的雨完成签到,获得积分10
2秒前
3秒前
香香发布了新的文献求助10
4秒前
5秒前
6秒前
33l完成签到,获得积分10
6秒前
丘比特应助lyang采纳,获得10
8秒前
8秒前
科研通AI5应助嗡嗡大王采纳,获得10
8秒前
8秒前
Barry发布了新的文献求助30
9秒前
9秒前
wind发布了新的文献求助10
9秒前
10秒前
qiong完成签到,获得积分10
10秒前
11秒前
慕容真发布了新的文献求助10
11秒前
小马甲应助闪闪傲丝采纳,获得10
12秒前
念念发布了新的文献求助20
12秒前
酷波er应助迅速谷槐采纳,获得10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Artificial bee colony algorithm 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835256
求助须知:如何正确求助?哪些是违规求助? 3377691
关于积分的说明 10500085
捐赠科研通 3097330
什么是DOI,文献DOI怎么找? 1705674
邀请新用户注册赠送积分活动 820660
科研通“疑难数据库(出版商)”最低求助积分说明 772174