Conditional Contrastive Domain Generalization for Fault Diagnosis

计算机科学 一般化 断层(地质) 领域(数学分析) 人工智能 算法 自然语言处理 模式识别(心理学) 数学 地质学 数学分析 地震学
作者
Mohamed Ragab,Zhenghua Chen,Wenyu Zhang,Emadeldeen Eldele,Min Wu,Chee Keong Kwoh,Xiaoli Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:74
标识
DOI:10.1109/tim.2022.3154000
摘要

Data-driven fault diagnosis plays a key role in stability and reliability of operations in modern industries. Recently, deep learning has achieved remarkable performance in fault classification tasks. However, in reality, the model can be deployed under highly varying working environments. As a result, the model trained under a certain working environment (i.e., certain distribution) can fail to generalize well on data from different working environments (i.e., different distributions). The naive approach of training a new model for each new working environment would be infeasible in practice. To address this issue, we propose a novel conditional contrastive domain generalization (CCDG) approach for fault diagnosis of rolling machinery, which is able to capture shareable class information and learn environment-independent representation among data collected from different environments (also known as domains). Specifically, our CCDG attempts to maximize the mutual information of similar classes across different domains while minimizing mutual information among different classes, such that it can learn domain-independent class representation that can be transferable to new unseen domains. Our proposed approach significantly outperforms state-of-the-art methods on two real-world fault diagnosis datasets with an average improvement of 7.75% and 2.60%, respectively. The promising performance of our proposed CCDG on new unseen target domain contributes toward more practical data-driven approaches that can work under challenging real-world environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fabea完成签到,获得积分10
刚刚
西蓝花香菜完成签到 ,获得积分10
1秒前
FiroZhang发布了新的文献求助10
2秒前
4秒前
闪闪怀柔完成签到,获得积分10
4秒前
licheng完成签到,获得积分10
6秒前
动漫大师发布了新的文献求助10
9秒前
博ge完成签到 ,获得积分10
11秒前
研友完成签到 ,获得积分10
11秒前
HY完成签到 ,获得积分10
11秒前
Sherling发布了新的文献求助10
12秒前
moonlin完成签到 ,获得积分10
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
cdercder应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
言非离完成签到 ,获得积分10
22秒前
酷波er应助Sherling采纳,获得10
23秒前
24秒前
24秒前
27秒前
苗笑卉发布了新的文献求助10
28秒前
鱼儿游完成签到 ,获得积分10
28秒前
hjygzv完成签到,获得积分10
31秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825056
求助须知:如何正确求助?哪些是违规求助? 3367362
关于积分的说明 10445316
捐赠科研通 3086761
什么是DOI,文献DOI怎么找? 1698266
邀请新用户注册赠送积分活动 816682
科研通“疑难数据库(出版商)”最低求助积分说明 769911