纳米晶
分散性
化学
密度泛函理论
纳米反应器
核磁共振波谱
氧化物
反应机理
胶体
组合化学
纳米技术
计算化学
物理化学
材料科学
有机化学
催化作用
作者
Rohan Pokratath,Dietger Van den Eynden,Susan Cooper,Jette K. Mathiesen,Valérie Waser,M. Devereux,Simon J. L. Billinge,Markus Meuwly,Kirsten M. Ø. Jensen,Jonathan De Roo
出处
期刊:JACS Au
[American Chemical Society]
日期:2022-03-09
卷期号:2 (4): 827-838
被引量:12
标识
DOI:10.1021/jacsau.1c00568
摘要
One can nowadays readily generate monodisperse colloidal nanocrystals, but a retrosynthetic analysis is still not possible since the underlying chemistry is often poorly understood. Here, we provide insight into the reaction mechanism of colloidal zirconia and hafnia nanocrystals synthesized from metal chloride and metal isopropoxide. We identify the active precursor species in the reaction mixture through a combination of nuclear magnetic resonance spectroscopy (NMR), density functional theory (DFT) calculations, and pair distribution function (PDF) analysis. We gain insight into the interaction of the surfactant, tri-n-octylphosphine oxide (TOPO), and the different precursors. Interestingly, we identify a peculiar X-type ligand redistribution mechanism that can be steered by the relative amount of Lewis base (L-type). We further monitor how the reaction mixture decomposes using solution NMR and gas chromatography, and we find that ZrCl4 is formed as a by-product of the reaction, limiting the reaction yield. The reaction proceeds via two competing mechanisms: E1 elimination (dominating) and SN1 substitution (minor). Using this new mechanistic insight, we adapted the synthesis to optimize the yield and gain control over nanocrystal size. These insights will allow the rational design and synthesis of complex oxide nanocrystals.
科研通智能强力驱动
Strongly Powered by AbleSci AI