Deep Learning Prediction of Ovarian Malignancy at US Compared with O-RADS and Expert Assessment

医学 接收机工作特性 恶性肿瘤 分类 人工智能 双雷达 回顾性队列研究 放射科 机器学习 内科学 癌症 计算机科学 乳腺癌 乳腺摄影术
作者
Hui Chen,Bowen Yang,Le Qian,Yi-Shuang Meng,Xiang-Hui Bai,Xiaowei Hong,Xin He,Meijiao Jiang,Fei Yuan,Qinwen Du,Weiwei Feng
出处
期刊:Radiology [Radiological Society of North America]
卷期号:304 (1): 106-113 被引量:57
标识
DOI:10.1148/radiol.211367
摘要

Background Deep learning (DL) algorithms could improve the classification of ovarian tumors assessed with multimodal US. Purpose To develop DL algorithms for the automated classification of benign versus malignant ovarian tumors assessed with US and to compare algorithm performance to Ovarian-Adnexal Reporting and Data System (O-RADS) and subjective expert assessment for malignancy. Materials and Methods This retrospective study included consecutive women with ovarian tumors undergoing gray scale and color Doppler US from January 2019 to November 2019. Histopathologic analysis was the reference standard. The data set was divided into training (70%), validation (10%), and test (20%) sets. Algorithms modified from residual network (ResNet) with two fusion strategies (feature fusion [hereafter, DLfeature] or decision fusion [hereafter, DLdecision]) were developed. DL prediction of malignancy was compared with O-RADS risk categorization and expert assessment by area under the receiver operating characteristic curve (AUC) analysis in the test set. Results A total of 422 women (mean age, 46.4 years ± 14.8 [SD]) with 304 benign and 118 malignant tumors were included; there were 337 women in the training and validation data set and 85 women in the test data set. DLfeature had an AUC of 0.93 (95% CI: 0.85, 0.97) for classifying malignant from benign ovarian tumors, comparable with O-RADS (AUC, 0.92; 95% CI: 0.85, 0.97; P = .88) and expert assessment (AUC, 0.97; 95% CI: 0.91, 0.99; P = .07), and similar to DLdecision (AUC, 0.90; 95% CI: 0.82, 0.96; P = .29). DLdecision, DLfeature, O-RADS, and expert assessment achieved sensitivities of 92%, 92%, 92%, and 96%, respectively, and specificities of 80%, 85%, 89%, and 87%, respectively, for malignancy. Conclusion Deep learning algorithms developed by using multimodal US images may distinguish malignant from benign ovarian tumors with diagnostic performance comparable to expert subjective and Ovarian-Adnexal Reporting and Data System assessment. © RSNA, 2022 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭达仲完成签到 ,获得积分10
刚刚
1秒前
Mmxn发布了新的文献求助10
2秒前
2秒前
Alandia应助MarEnz采纳,获得50
3秒前
tom关闭了tom文献求助
3秒前
栀璃鸳挽发布了新的文献求助10
4秒前
4秒前
5秒前
晨曦完成签到,获得积分10
6秒前
花玥鹿完成签到,获得积分10
7秒前
酷波er应助XSY0112采纳,获得10
7秒前
jia发布了新的文献求助30
8秒前
Mmxn完成签到,获得积分10
8秒前
右耳发布了新的文献求助10
8秒前
9秒前
景茶茶完成签到 ,获得积分0
10秒前
11秒前
12秒前
猛龙总冠军完成签到,获得积分10
13秒前
科研达人发布了新的文献求助10
14秒前
住在魔仙堡的鱼完成签到 ,获得积分10
14秒前
15秒前
16秒前
我是老大应助prawn218采纳,获得10
19秒前
yang发布了新的文献求助10
19秒前
二四四三关注了科研通微信公众号
19秒前
20秒前
XSY0112完成签到,获得积分10
21秒前
23秒前
24秒前
..发布了新的文献求助10
26秒前
zhh完成签到,获得积分10
26秒前
Amy发布了新的文献求助10
28秒前
tom完成签到,获得积分10
29秒前
爪爪发布了新的文献求助10
29秒前
30秒前
吱吱熊sama完成签到,获得积分10
31秒前
Amy完成签到,获得积分10
33秒前
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783844
求助须知:如何正确求助?哪些是违规求助? 3329115
关于积分的说明 10239981
捐赠科研通 3044532
什么是DOI,文献DOI怎么找? 1671069
邀请新用户注册赠送积分活动 800142
科研通“疑难数据库(出版商)”最低求助积分说明 759192