Physics-Informed Sparse Gaussian Process for Probabilistic Stability Analysis of Large-Scale Power System with Dynamic PVs and Loads

概率逻辑 高斯过程 非线性系统 不确定度量化 电力系统 高斯分布 计算机科学 理论(学习稳定性) 数学优化 聚类分析 随机过程 控制理论(社会学) 数学 功率(物理) 机器学习 统计 人工智能 物理 量子力学 控制(管理)
作者
Ye, Ketian,Zhao, Junbo,Duan, Nan,Zhang, Yingchen
出处
期刊:IEEE Transactions on Power Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tpwrs.2022.3188182
摘要

This paper proposes a physics-informed sparse Gaussian process (SGP) for probabilistic stability assessment of large-scale power systems in the presence of uncertain dynamic PVs and loads. The differential and algebraic equations considering uncertainties from dynamic PVs and loads are reformulated to a nonlinear mapping relationship that allows the application of SGP. Thanks to the nonparametric characteristic of Gaussian process, the proposed framework does not require distributions of uncertain inputs and this distinguishes it from existing approaches. As the original Gaussian process is not scalable to large-scale systems with high dimensional uncertain inputs, this paper develops the SGP with a stochastic variational inference technique. It leads to approximately two orders of complex reduction. A data pre-processing step is also introduced to tackle the coexistence of stable and unstable cases by sample clustering and constructing separate SGPs. The probabilistic transient stability index is analyzed to assess system stability under different uncertain dynamics loads and PVs. Comparisons are performed with the sampling-based, the polynomial chaos expansion-based, and traditional Gaussian process-based methods on the modified IEEE 118-bus and Texas 2000-bus systems under various scenarios, including different levels of uncertainties and the existence of nonlinear correlations among dynamic PVs. The impacts of data quality and quantity issues are also investigated. It is shown that the proposed SGP achieves significantly improved computational efficiency while maintaining high accuracy with a limited number of data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助机智毛豆采纳,获得10
刚刚
A市觅食高手完成签到,获得积分10
刚刚
刚刚
深情安青应助yxy采纳,获得10
1秒前
3秒前
3秒前
卋罖完成签到,获得积分10
3秒前
3秒前
我是老大应助TianyuYu采纳,获得10
4秒前
123发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
科研通AI2S应助高高ai采纳,获得10
6秒前
6秒前
7秒前
7秒前
鱼鱼鱼发布了新的文献求助10
8秒前
任乐乐发布了新的文献求助10
8秒前
9秒前
yuekun完成签到,获得积分10
10秒前
上官若男应助lonely采纳,获得10
10秒前
11秒前
11秒前
如常完成签到,获得积分10
12秒前
深情安青应助WHITE1采纳,获得10
13秒前
13秒前
科研通AI5应助yuekun采纳,获得10
14秒前
TianyuYu完成签到,获得积分20
14秒前
小昔应助英勇的若灵采纳,获得10
14秒前
14秒前
14秒前
yxy发布了新的文献求助10
15秒前
15秒前
JamesPei应助如常采纳,获得10
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811134
求助须知:如何正确求助?哪些是违规求助? 3355447
关于积分的说明 10376297
捐赠科研通 3072298
什么是DOI,文献DOI怎么找? 1687391
邀请新用户注册赠送积分活动 811595
科研通“疑难数据库(出版商)”最低求助积分说明 766700