已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

YOLOD: A Target Detection Method for UAV Aerial Imagery

计算机科学 人工智能 航空影像 计算机视觉 棱锥(几何) 联营 目标检测 帕斯卡(单位) 深度学习 特征(语言学) 遥感 模式识别(心理学) 图像(数学) 数学 地理 语言学 哲学 程序设计语言 几何学
作者
Xudong Luo,Yiquan Wu,Langyue Zhao
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (14): 3240-3240 被引量:39
标识
DOI:10.3390/rs14143240
摘要

Target detection based on unmanned aerial vehicle (UAV) images has increasingly become a hot topic with the rapid development of UAVs and related technologies. UAV aerial images often feature a large number of small targets and complex backgrounds due to the UAV’s flying height and shooting angle of view. These characteristics make the advanced YOLOv4 detection method lack outstanding performance in UAV aerial images. In light of the aforementioned problems, this study adjusted YOLOv4 to the image’s characteristics, making the improved method more suitable for target detection in UAV aerial images. Specifically, according to the characteristics of the activation function, different activation functions were used in the shallow network and the deep network, respectively. The loss for the bounding box regression was computed using the EIOU loss function. Improved Efficient Channel Attention (IECA) modules were added to the backbone. At the neck, the Spatial Pyramid Pooling (SPP) module was replaced with a pyramid pooling module. At the end of the model, Adaptive Spatial Feature Fusion (ASFF) modules were added. In addition, a dataset of forklifts based on UAV aerial imagery was also established. On the PASCAL VOC, VEDAI, and forklift datasets, we ran a series of experiments. The experimental results reveal that the proposed method (YOLO-DRONE, YOLOD) has better detection performance than YOLOv4 for the aforementioned three datasets, with the mean average precision (mAP) being improved by 3.06%, 3.75%, and 1.42%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Fizzes完成签到,获得积分10
刚刚
李爱国应助邋遢大王采纳,获得10
1秒前
2秒前
2秒前
TiAmo发布了新的文献求助10
4秒前
4秒前
wab完成签到,获得积分0
5秒前
我是老大应助liberty采纳,获得10
7秒前
Fizzes发布了新的文献求助10
9秒前
9秒前
陈志强关注了科研通微信公众号
9秒前
10秒前
11秒前
11秒前
12秒前
ang发布了新的文献求助10
15秒前
一叶舟完成签到,获得积分10
15秒前
15秒前
邋遢大王发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
爱听歌的悒完成签到 ,获得积分10
17秒前
19秒前
JamesPei应助于雪晴采纳,获得10
19秒前
默默发布了新的文献求助10
19秒前
勇敢的蝙蝠侠完成签到,获得积分10
20秒前
充电宝应助健忘苠采纳,获得10
20秒前
清秀LL完成签到 ,获得积分10
21秒前
李健应助lyg采纳,获得10
21秒前
liberty发布了新的文献求助10
22秒前
陈志强发布了新的文献求助10
22秒前
24秒前
24秒前
默默完成签到,获得积分10
25秒前
27秒前
28秒前
28秒前
xiaomeng完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5076332
求助须知:如何正确求助?哪些是违规求助? 4295809
关于积分的说明 13385814
捐赠科研通 4117740
什么是DOI,文献DOI怎么找? 2254971
邀请新用户注册赠送积分活动 1259520
关于科研通互助平台的介绍 1192360