Multifingered Robot Hand Compliant Manipulation Based on Vision-Based Demonstration and Adaptive Force Control

人工智能 阻抗控制 机器人 前馈 机器人学 计算机科学 控制器(灌溉) 遥操作 机器人控制 计算机视觉 控制工程 工程类 模拟 移动机器人 农学 生物
作者
Chao Zeng,Shuang Li,Zhaopeng Chen,Chenguang Yang,Fuchun Sun,Jianwei Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (9): 5452-5463 被引量:21
标识
DOI:10.1109/tnnls.2022.3184258
摘要

Multifingered hand dexterous manipulation is quite challenging in the domain of robotics. One remaining issue is how to achieve compliant behaviors. In this work, we propose a human-in-the-loop learning-control approach for acquiring compliant grasping and manipulation skills of a multifinger robot hand. This approach takes the depth image of the human hand as input and generates the desired force commands for the robot. The markerless vision-based teleoperation system is used for the task demonstration, and an end-to-end neural network model (i.e., TeachNet) is trained to map the pose of the human hand to the joint angles of the robot hand in real-time. To endow the robot hand with compliant human-like behaviors, an adaptive force control strategy is designed to predict the desired force control commands based on the pose difference between the robot hand and the human hand during the demonstration. The force controller is derived from a computational model of the biomimetic control strategy in human motor learning, which allows adapting the control variables (impedance and feedforward force) online during the execution of the reference joint angles. The simultaneous adaptation of the impedance and feedforward profiles enables the robot to interact with the environment compliantly. Our approach has been verified in both simulation and real-world task scenarios based on a multifingered robot hand, that is, the Shadow Hand, and has shown more reliable performances than the current widely used position control mode for obtaining compliant grasping and manipulation behaviors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
2秒前
斯文败类应助戴士杰686采纳,获得10
2秒前
研研研发布了新的文献求助30
2秒前
3秒前
3秒前
4秒前
4秒前
ljx发布了新的文献求助10
4秒前
优秀的凡蕾完成签到,获得积分10
4秒前
笨鸟先飞完成签到 ,获得积分10
5秒前
5秒前
XJTU_jyh完成签到,获得积分10
6秒前
Lin3J发布了新的文献求助10
7秒前
干净以珊发布了新的文献求助10
7秒前
爱睡午觉完成签到,获得积分10
7秒前
8秒前
Jingshuiliushen完成签到,获得积分10
8秒前
小朱佩奇完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
虚拟的仙人掌完成签到 ,获得积分10
10秒前
11秒前
阿飞完成签到,获得积分10
11秒前
CodeCraft应助Ukiss采纳,获得10
11秒前
满意寻绿完成签到,获得积分10
11秒前
wanci应助小曾采纳,获得10
11秒前
timer完成签到,获得积分10
11秒前
12秒前
12秒前
aqiu完成签到,获得积分10
12秒前
12秒前
tfsn20完成签到,获得积分0
13秒前
13秒前
丘比特应助干净以珊采纳,获得10
13秒前
尊敬怀薇完成签到,获得积分10
13秒前
qq781208654发布了新的文献求助10
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804626
求助须知:如何正确求助?哪些是违规求助? 3349484
关于积分的说明 10344593
捐赠科研通 3065523
什么是DOI,文献DOI怎么找? 1683126
邀请新用户注册赠送积分活动 808719
科研通“疑难数据库(出版商)”最低求助积分说明 764695