Research on self‐learning system with “Internet + Education” innovative talents education mode under big data background

大数据 互联网 聚类分析 统计的 计算机科学 知识管理 数据科学 人工智能 数据挖掘 万维网 统计 数学
作者
Ying Luo,Zhi‐quan An
出处
期刊:Computer Applications in Engineering Education [Wiley]
卷期号:31 (3): 662-675 被引量:4
标识
DOI:10.1002/cae.22525
摘要

Abstract In the “Internet + Education” mode, a big data analysis of innovative talents education model is conducted to improve the quantitative evaluation ability of innovative talent education and training, and the “Internet + Education” innovative talent education model under the background of big data is proposed based on segmented information fusion and regression statistical analysis. More and more attention is attracted by the continuous advancement of innovative talent training models. The resource data mining and information processing research of innovative talent education models are conducted in related literature and have achieved certain research results. A big data analysis model for the cultivation of innovative talents is constructed and a structured big data information reorganization method is adopted to conduct information fusion processing of the “Internet + Education” innovative talents education model. Features describing the associated information of the talent cultivation model are extracted and the segmented information fusion method is adopted for feature clustering processing. The autoregression analysis of innovative talents cultivation evaluation ability is conducted based on feature clustering results and a test statistic model is constructed for effective analysis of the “Internet + Education” innovative talents education model under big data background. As a result, comprehensive and fuzzy decision‐making on the talent education model is realized according to judgment statistics. Simulation results show that the accuracy of a quantitative assessment of the “Internet + Education” innovative talents education model is higher with this method and the convergence of regression analysis is better. This shows that this method can effectively instruct the innovation of the talent education model and novel technologies can be more utilized by the efficiency and performance of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xy完成签到,获得积分10
1秒前
pengliao完成签到,获得积分10
1秒前
2秒前
田様应助专注巨人采纳,获得10
2秒前
3秒前
3秒前
科研通AI5应助青原采纳,获得10
4秒前
传奇3应助spring采纳,获得20
4秒前
Leo发布了新的文献求助30
5秒前
zhangni完成签到,获得积分10
5秒前
5秒前
斑马发布了新的文献求助10
6秒前
太阳完成签到,获得积分10
7秒前
LIIII发布了新的文献求助10
7秒前
7秒前
8秒前
鲁以筠完成签到,获得积分10
9秒前
太阳发布了新的文献求助10
10秒前
山东老铁发布了新的文献求助10
12秒前
12秒前
12秒前
15秒前
15秒前
15秒前
LIIII完成签到,获得积分10
16秒前
16秒前
16秒前
Forizix发布了新的文献求助10
16秒前
我是老大应助斑马采纳,获得10
18秒前
时柚完成签到,获得积分20
18秒前
rumengzhuo完成签到,获得积分10
18秒前
锦江完成签到,获得积分10
18秒前
19秒前
Owen应助山东老铁采纳,获得10
19秒前
19秒前
shirleyxzz发布了新的文献求助10
20秒前
23秒前
残幻应助时柚采纳,获得10
24秒前
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818644
求助须知:如何正确求助?哪些是违规求助? 3361692
关于积分的说明 10413776
捐赠科研通 3079904
什么是DOI,文献DOI怎么找? 1693544
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768248