Impact of Nanoparticle Size and Surface Chemistry on Peptoid Self-Assembly

扁桃体 纳米颗粒 自组装 纳米技术 化学 表面改性 材料科学 生物化学 物理化学
作者
Madison Monahan,Micaela Homer,Shuai Zhang,Renyu Zheng,Chun‐Long Chen,James De Yoreo,Brandi M. Cossairt
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (5): 8095-8106 被引量:23
标识
DOI:10.1021/acsnano.2c01203
摘要

Self-assembled organic nanomaterials can be generated by bottom-up assembly pathways where the structure is controlled by the organic sequence and altered using pH, temperature, and solvation. In contrast, self-assembled structures based on inorganic nanoparticles typically rely on physical packing and drying effects to achieve uniform superlattices. By combining these two chemistries to access inorganic-organic nanostructures, we aim to understand the key factors that govern the assembly pathway and structural outcomes in hybrid systems. In this work, we outline two assembly regimes between quantum dots (QDs) and reversibly binding peptoids. These regimes can be accessed by changing the solubility and size of the hybrid (peptoid-QD) monomer unit. The hybrid monomers are prepared via ligand exchange and assembled, and the resulting assemblies are studied using ex-situ transmission electron microscopy as a function of assembly time. In aqueous conditions, QDs were found to stabilize certain morphologies of peptoid intermediates and generate a final product consisting of multilayers of small peptoid sheets linked by QDs. The QDs were also seen to facilitate or inhibit assembly in organic solvents based on the relative hydrophobicity of the surface ligands, which ultimately dictated the solubility of the hybrid monomer unit. Increasing the size of the QDs led to large hybrid sheets with regions of highly ordered square-packed QDs. A second, smaller QD species can also be integrated to create binary hybrid lattices. These results create a set of design principles for controlling the structure and structural evolution of hybrid peptoid-QD assemblies and contribute to the predictive synthesis of complex hybrid matter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麦当喽完成签到 ,获得积分10
1秒前
科研通AI5应助陶渊明采纳,获得10
2秒前
jw完成签到,获得积分10
2秒前
xzy998发布了新的文献求助10
3秒前
Millennial完成签到,获得积分10
4秒前
墨然回首发布了新的文献求助10
5秒前
俊逸十八完成签到 ,获得积分10
6秒前
7秒前
自然沁完成签到,获得积分10
7秒前
落后钢铁侠完成签到 ,获得积分10
8秒前
white完成签到 ,获得积分10
9秒前
9秒前
汉堡包应助大方的百川采纳,获得10
11秒前
11秒前
鸭鸭完成签到,获得积分10
12秒前
木槿完成签到,获得积分10
13秒前
Lucas应助执着的鹏煊采纳,获得10
13秒前
Rainlistener发布了新的文献求助10
14秒前
GGBond完成签到 ,获得积分10
14秒前
小熊完成签到,获得积分10
14秒前
个性的依风完成签到,获得积分10
14秒前
陶渊明发布了新的文献求助10
15秒前
长期不想取网名完成签到,获得积分10
16秒前
guaxi关注了科研通微信公众号
16秒前
爆米花应助精明曼荷采纳,获得10
16秒前
smile完成签到,获得积分10
17秒前
独孤一草完成签到,获得积分10
20秒前
21秒前
xzy998发布了新的文献求助10
22秒前
大树完成签到 ,获得积分10
22秒前
共享精神应助玉米豆采纳,获得10
22秒前
22秒前
冰糖葫芦娃完成签到 ,获得积分10
23秒前
cincrady完成签到,获得积分10
23秒前
慕青应助zfy采纳,获得10
24秒前
雪落完成签到,获得积分10
24秒前
Rainlistener完成签到,获得积分10
25秒前
25秒前
ding应助祥子的骆驼采纳,获得10
25秒前
沉默的婴完成签到 ,获得积分10
26秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801141
求助须知:如何正确求助?哪些是违规求助? 3346809
关于积分的说明 10330527
捐赠科研通 3063158
什么是DOI,文献DOI怎么找? 1681402
邀请新用户注册赠送积分活动 807549
科研通“疑难数据库(出版商)”最低求助积分说明 763728