亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics-Informed Neural Networks for Brain Hemodynamic Predictions Using Medical Imaging

医学影像学 血流动力学 人工神经网络 神经影像学 人工智能 计算机科学 医学物理学 物理 神经科学 医学 心理学 内科学
作者
Mohammad Sarabian,Hessam Babaee,Kaveh Laksari
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (9): 2285-2303 被引量:62
标识
DOI:10.1109/tmi.2022.3161653
摘要

Determining brain hemodynamics plays a critical role in the diagnosis and treatment of various cerebrovascular diseases. In this work, we put forth a physics-informed deep learning framework that augments sparse clinical measurements with one-dimensional (1D) reduced-order model (ROM) simulations to generate physically consistent brain hemodynamic parameters with high spatiotemporal resolution. Transcranial Doppler (TCD) ultrasound is one of the most common techniques in the current clinical workflow that enables noninvasive and instantaneous evaluation of blood flow velocity within the cerebral arteries. However, it is spatially limited to only a handful of locations across the cerebrovasculature due to the constrained accessibility through the skull's acoustic windows. Our deep learning framework uses in vivo real-time TCD velocity measurements at several locations in the brain combined with baseline vessel cross-sectional areas acquired from 3D angiography images and provides high-resolution maps of velocity, area, and pressure in the entire brain vasculature. We validate the predictions of our model against in vivo velocity measurements obtained via four-dimensional (4D) flow magnetic resonance imaging (MRI) scans. We then showcase the clinical significance of this technique in diagnosing cerebral vasospasm (CVS) by successfully predicting the changes in vasospastic local vessel diameters based on corresponding sparse velocity measurements. We show this capability by generating synthetic blood flow data after cerebral vasospasm at various levels of stenosis. Here, we demonstrate that the physics-based deep learning approach can estimate and quantify the subject-specific cerebral hemodynamic variables with high accuracy despite lacking knowledge of inlet and outlet boundary conditions, which is a significant limitation for the accuracy of the conventional purely physics-based computational models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无语的保温杯完成签到,获得积分10
20秒前
田様应助欣欣采纳,获得10
34秒前
43秒前
44秒前
欣欣发布了新的文献求助10
50秒前
所所应助哈哈哈哈采纳,获得10
1分钟前
1分钟前
哈哈哈哈发布了新的文献求助10
1分钟前
qiandi完成签到 ,获得积分10
1分钟前
2分钟前
纯金金完成签到,获得积分10
2分钟前
哈哈哈哈完成签到,获得积分10
2分钟前
奥特斌完成签到 ,获得积分10
2分钟前
科目三应助sun采纳,获得10
3分钟前
3分钟前
sun发布了新的文献求助10
3分钟前
孙老师完成签到 ,获得积分10
4分钟前
NOME发布了新的文献求助10
4分钟前
4分钟前
sun完成签到,获得积分20
4分钟前
NOME完成签到,获得积分10
4分钟前
4分钟前
wuming发布了新的文献求助20
4分钟前
LL完成签到,获得积分10
5分钟前
科研通AI2S应助Sandy采纳,获得10
5分钟前
欣欣发布了新的文献求助10
5分钟前
科研通AI2S应助wuming采纳,获得10
6分钟前
爆米花应助lalalatiancai采纳,获得10
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
lalalatiancai发布了新的文献求助10
6分钟前
6分钟前
yun发布了新的文献求助10
6分钟前
lalalatiancai完成签到,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
Cedric发布了新的文献求助20
6分钟前
7分钟前
科研通AI5应助houhoujiang采纳,获得10
7分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788250
求助须知:如何正确求助?哪些是违规求助? 3333704
关于积分的说明 10263128
捐赠科研通 3049553
什么是DOI,文献DOI怎么找? 1673614
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760511