清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification

深信不疑网络 计算机科学 特征提取 深度学习 断层(地质) 卷积神经网络 人工智能 模式识别(心理学) 分类器(UML) 特征学习 计算 机器学习 算法 地质学 地震学
作者
Chen Lü,Zhenya Wang,Bo Zhou
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:32: 139-151 被引量:396
标识
DOI:10.1016/j.aei.2017.02.005
摘要

A novel deep architecture based bearing diagnosis method is proposed.The method helps salient fault characteristic mining and intelligent diagnosis.The method is validated under various degrees of ambient noise. Rolling bearing tips are often the most susceptible to electro-mechanical system failure due to high-speed and complex working conditions, and recent studies on diagnosing bearing health using vibration data have developed an assortment of feature extraction and fault classification methods. Due to the strong non-linear and non-stationary characteristics, an effective and reliable deep learning method based on a convolutional neural network (CNN) is investigated in this paper making use of cognitive computing theory, which introduces the advantages of image recognition and visual perception to bearing fault diagnosis by simulating the cognition process of the cerebral cortex. The novel feature representation method for bearing data is first discussed using supervised deep learning with the goal of identifying more robust and salient feature representations to reduce information loss. Next, the deep hierarchical structure is trained in a robust manner that is established using a transmitting rule of greedy training layer by layer. Convolution computation, rectified linear units, and sub-sampling are applied for weight replication and reducing the number of parameters that need to be learned to improve the general feed-forward back propagation training. The CNN model could thus reduce learning computation requirements in the temporal dimension, and an invariance level of working condition fluctuation and ambient noise is provided by identifying the elementary features of bearings. A top classifier followed by a back propagation process is used for fault classification. Contrast experiments and analyses have been undertaken to delineate the effectiveness of the CNN model for fault classification of rolling bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
润泉发布了新的文献求助10
3秒前
4秒前
Criminology34应助科研通管家采纳,获得20
4秒前
四叶草完成签到 ,获得积分10
9秒前
sos007完成签到 ,获得积分10
16秒前
25秒前
26秒前
管靖易完成签到 ,获得积分10
28秒前
29秒前
tuihuo发布了新的文献求助10
30秒前
33秒前
WWW完成签到 ,获得积分10
36秒前
guoxihan发布了新的文献求助10
37秒前
希望天下0贩的0应助tuihuo采纳,获得10
41秒前
lyw发布了新的文献求助10
46秒前
xgx984完成签到,获得积分10
50秒前
无心的尔阳完成签到 ,获得积分10
53秒前
年轻千愁完成签到 ,获得积分10
55秒前
隐形曼青应助侧耳倾听采纳,获得10
55秒前
小蘑菇应助侧耳倾听采纳,获得10
55秒前
minnie完成签到 ,获得积分10
57秒前
群青完成签到 ,获得积分10
1分钟前
1分钟前
小鱼女侠完成签到 ,获得积分10
1分钟前
1分钟前
tuihuo发布了新的文献求助10
1分钟前
1分钟前
烟花应助tuihuo采纳,获得10
1分钟前
1分钟前
qq完成签到 ,获得积分10
1分钟前
tianshanfeihe完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764758
求助须知:如何正确求助?哪些是违规求助? 5554914
关于积分的说明 15406592
捐赠科研通 4899732
什么是DOI,文献DOI怎么找? 2635956
邀请新用户注册赠送积分活动 1584135
关于科研通互助平台的介绍 1539403