仲裁人
计算机科学
透明度(行为)
符号
人工智能
问责
程序设计语言
机器学习
软件工程
领域(数学分析)
计算机安全
政治学
数学分析
数学
算术
并行计算
法学
作者
Julian Zucker,Myraeka d'Leeuwen
标识
DOI:10.1145/3375627.3375858
摘要
The widespread deployment of machine learning models in high- stakes decision making scenarios requires a code of ethics for machine learning practitioners. We identify four of the primary components required for the ethical practice of machine learn- ing: transparency, fairness, accountability, and reproducibility. We introduce Arbiter, a domain-specific programming language for machine learning practitioners that is designed for ethical machine learning. Arbiter provides a notation for recording how machine learning models will be trained, and we show how this notation can encourage the four described components of ethical machine learning.
科研通智能强力驱动
Strongly Powered by AbleSci AI