Language Models are Few-Shot Learners

计算机科学 任务(项目管理) 语言模型 自然语言处理 判决 人工智能 词(群论) 简单(哲学) 语言学 认识论 哲学 经济 管理
作者
T. B. Brown,Benjamin Mann,Nick Ryder,Melanie Subbiah,Jared Kaplan,Prafulla Dhariwal,Arvind Neelakantan,Pranav Shyam,Girish Sastry,Amanda Askell,Sandhini Agarwal,Ariel Herbert-Voss,Gretchen Krueger,Tom Henighan,Rewon Child,Aditya Ramesh,Daniel M. Ziegler,Jeffrey Wu,Clemens Winter,Christopher Hesse,Mark Chen,Eric J. Sigler,Mateusz Litwin,Scott Gray,Benjamin Chess,Jack Clark,Christopher Berner,Sam McCandlish,Alec Radford,Ilya Sutskever,Dario Amodei
出处
期刊:Cornell University - arXiv 被引量:1826
摘要

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助狂野映寒采纳,获得10
1秒前
调皮的代双完成签到 ,获得积分10
1秒前
共享精神应助小席采纳,获得10
2秒前
4秒前
Oreki完成签到,获得积分10
4秒前
万类霜天竞自由完成签到 ,获得积分10
4秒前
4秒前
Orange应助月亮采纳,获得10
7秒前
Sky完成签到,获得积分10
7秒前
inzaghi完成签到,获得积分10
7秒前
emo发布了新的文献求助10
8秒前
ixueyi完成签到,获得积分10
10秒前
鲁滨逊完成签到 ,获得积分10
11秒前
11秒前
kuka007完成签到,获得积分10
12秒前
直率的心情完成签到,获得积分10
13秒前
余子文发布了新的文献求助10
14秒前
没天赋完成签到 ,获得积分10
14秒前
15秒前
Jlu发布了新的文献求助10
15秒前
长尾巴的人类完成签到,获得积分10
16秒前
打不溜完成签到,获得积分20
17秒前
11完成签到,获得积分10
17秒前
小茶发布了新的文献求助10
17秒前
19秒前
浮游应助今天开心吗采纳,获得10
19秒前
DZQ完成签到,获得积分10
20秒前
NexusExplorer应助李子园采纳,获得10
20秒前
gdwang1973发布了新的文献求助10
20秒前
22秒前
Alex完成签到,获得积分0
24秒前
ymX完成签到,获得积分10
26秒前
27秒前
张岱帅z完成签到,获得积分10
27秒前
27秒前
27秒前
金金完成签到,获得积分10
27秒前
大眼的平松完成签到,获得积分10
29秒前
Huanghong完成签到,获得积分10
29秒前
Jlu完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306557
求助须知:如何正确求助?哪些是违规求助? 4452324
关于积分的说明 13854559
捐赠科研通 4339805
什么是DOI,文献DOI怎么找? 2382859
邀请新用户注册赠送积分活动 1377728
关于科研通互助平台的介绍 1345407