亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Convolutional Neural Network With Performance Comparable to Radiologists for Differentiating Between Spinal Schwannoma and Meningioma

医学 神经鞘瘤 磁共振成像 卷积神经网络 脑膜瘤 接收机工作特性 放射科 矢状面 核医学 人工智能 计算机科学 内科学
作者
Satoshi Maki,Takeo Furuya,Takuro Horikoshi,Hajime Yokota,Yasukuni Mori,Joji Ota,Yohei Kawasaki,Takuya Miyamoto,Masaki Norimoto,Sho Okimatsu,Yasuhiro Shiga,Kazuhide Inage,Sumihisa Orita,Hiroshi Takahashi,Hiroki Suyari,Takashi Uno,Seiji Ohtori
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:45 (10): 694-700 被引量:47
标识
DOI:10.1097/brs.0000000000003353
摘要

Study Design. Retrospective analysis of magnetic resonance imaging (MRI). Objective. The aim of this study was to evaluate the performance of our convolutional neural network (CNN) in differentiating between spinal schwannoma and meningioma on MRI. We compared the performance of the CNN and that of two expert radiologists. Summary of Background Data. Preoperative discrimination between spinal schwannomas and meningiomas is crucial because different surgical procedures are required for their treatment. A deep-learning approach based on CNNs is gaining interest in the medical imaging field. Methods. We retrospectively reviewed data from patients with spinal schwannoma and meningioma who had undergone MRI and tumor resection. There were 50 patients with schwannoma and 34 patients with meningioma. Sagittal T2-weighted magnetic resonance imaging (T2WI) and sagittal contrast-enhanced T1-weighted magnetic resonance imaging (T1WI) were used for the CNN training and validation. The deep learning framework Tensorflow was used to construct the CNN architecture. To evaluate the performance of the CNN, we plotted the receiver-operating characteristic (ROC) curve and calculated the area under the curve (AUC). We calculated and compared the sensitivity, specificity, and accuracy of the diagnosis by the CNN and two board-certified radiologists. Results. . The AUC of ROC curves of the CNN based on T2WI and contrast-enhanced T1WI were 0.876 and 0.870, respectively. The sensitivity of the CNN based on T2WI was 78%; 100% for radiologist 1; and 95% for radiologist 2. The specificity was 82%, 26%, and 42%, respectively. The accuracy was 80%, 69%, and 73%, respectively. By contrast, the sensitivity of the CNN based on contrast-enhanced T1WI was 85%; 100% for radiologist 1; and 96% for radiologist 2. The specificity was 75%, 56, and 58%, respectively. The accuracy was 81%, 82%, and 81%, respectively. Conclusion. We have successfully differentiated spinal schwannomas and meningiomas using the CNN with high diagnostic accuracy comparable to that of experienced radiologists. Level of Evidence: 4
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Chouvikin完成签到,获得积分10
4秒前
10秒前
桐夜完成签到 ,获得积分10
18秒前
21秒前
lqhccww发布了新的文献求助10
27秒前
30秒前
37秒前
zilt1109发布了新的文献求助10
46秒前
Orange应助龙06采纳,获得30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
chenyue233完成签到,获得积分10
1分钟前
怪僻完成签到 ,获得积分10
1分钟前
郗妫完成签到 ,获得积分10
1分钟前
2分钟前
丘比特应助溜溜采纳,获得10
2分钟前
2分钟前
2分钟前
yxl要顺利毕业_发6篇C完成签到,获得积分10
2分钟前
2分钟前
天天快乐应助浮生六记采纳,获得10
2分钟前
3分钟前
3分钟前
溜溜发布了新的文献求助10
3分钟前
zsmj23完成签到 ,获得积分0
3分钟前
3分钟前
白华苍松发布了新的文献求助20
3分钟前
英姑应助白华苍松采纳,获得10
3分钟前
3分钟前
hhj完成签到,获得积分20
3分钟前
小蘑菇应助溜溜采纳,获得10
3分钟前
4分钟前
勇猛的小qin完成签到 ,获得积分10
4分钟前
4分钟前
LogeYu完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
溜溜发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509664
求助须知:如何正确求助?哪些是违规求助? 4604470
关于积分的说明 14489810
捐赠科研通 4539307
什么是DOI,文献DOI怎么找? 2487442
邀请新用户注册赠送积分活动 1469860
关于科研通互助平台的介绍 1442070