Identification of herbal categories active in pain disorder subtypes by machine learning help reveal novel molecular mechanisms of algesia

医学 神经病理性疼痛 慢性疼痛 疾病 生物信息学 药理学 物理疗法 内科学 生物
作者
Xue Xu,Kuo Yang,Feilong Zhang,Wenwen Liu,Yinyan Wang,Changying Yu,Junyao Wang,Keke Zhang,Chao Zhang,Goran Nenadić,Dacheng Tao,Xuezhong Zhou,Hongcai Shang,Jianxin Chen
出处
期刊:Pharmacological Research [Elsevier BV]
卷期号:156: 104797-104797 被引量:11
标识
DOI:10.1016/j.phrs.2020.104797
摘要

Chronic pain is highly prevalent and poorly controlled, of which the accurate underlying mechanisms need be further elucidated. Herbal drugs have been widely used for controlling various pain disorders. The systematic integration of pain herbal data resources might be promising to help investigate the molecular mechanisms of pain phenotypes. Here, we integrated large-scale bibliographic literatures and well-established data sources to obtain high-quality pain relevant herbal data (i.e. 426 pain related herbs with their targets). We used machine learning method to identify three distinct herb categories with their specific indications of symptoms, targets and enriched pathways, which were characterized by the efficacy of treatment to the chronic cough related neuropathic pain, the reproduction and autoimmune related pain, and the cancer pain, respectively. We further detected the novel pathophysiological mechanisms of the pain subtypes by network medicine approach to evaluate the interactions between herb targets and the pain disease modules. This work increased the understanding of the underlying molecular mechanisms of pain subtypes that herbal drugs are participating and with the ultimate aim of developing novel personalized drugs for pain disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xx完成签到 ,获得积分10
刚刚
bkagyin应助adaasd采纳,获得10
刚刚
韩永利发布了新的文献求助10
刚刚
852应助贾潮雨采纳,获得10
刚刚
stqs发布了新的文献求助10
刚刚
爱尚完成签到,获得积分10
1秒前
852应助qiqi采纳,获得10
1秒前
学fei了吗完成签到,获得积分10
1秒前
aaaa完成签到,获得积分10
2秒前
tttp完成签到,获得积分10
2秒前
3秒前
眯眯眼的士萧完成签到 ,获得积分10
3秒前
痛苦啊完成签到,获得积分10
3秒前
magic发布了新的文献求助10
3秒前
3秒前
聪慧皓轩完成签到,获得积分20
3秒前
落寞依珊发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
深情安青应助涵涵采纳,获得10
5秒前
聪慧皓轩发布了新的文献求助10
6秒前
6秒前
鸣笛应助蒋j采纳,获得20
6秒前
赵哈哈发布了新的文献求助10
8秒前
朝气发布了新的文献求助10
8秒前
magic完成签到,获得积分10
8秒前
莎莎士比亚完成签到,获得积分10
8秒前
23xyke完成签到,获得积分10
8秒前
小十七果完成签到,获得积分10
9秒前
mingxuan完成签到,获得积分10
9秒前
10秒前
zhuzhen007完成签到,获得积分10
10秒前
无花果应助nanfeng采纳,获得10
10秒前
11秒前
顾勇完成签到,获得积分0
11秒前
小海关注了科研通微信公众号
11秒前
研友_VZG7GZ应助qiqi采纳,获得10
11秒前
Mely0203发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946605
求助须知:如何正确求助?哪些是违规求助? 3491745
关于积分的说明 11062227
捐赠科研通 3222706
什么是DOI,文献DOI怎么找? 1781030
邀请新用户注册赠送积分活动 866089
科研通“疑难数据库(出版商)”最低求助积分说明 800126