Using Feature Selection for Local Causal Structure Learning

因果结构 人工智能 特征选择 贝叶斯网络 水准点(测量) 计算机科学 特征(语言学) 局部结构 机器学习 局部搜索(优化) 模式识别(心理学) 算法 地理 哲学 化学物理 物理 量子力学 语言学 大地测量学
作者
Zhaolong Ling,Kui Yu,Hao Wang,Lei Li,Xindong Wu
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (4): 530-540 被引量:22
标识
DOI:10.1109/tetci.2020.2978238
摘要

Local causal structure learning aims to discover and distinguish the direct causes and direct effects of a target variable. However, the state-of-the-art local causal structure learning algorithms need to perform an exhaustive subset search within the currently selected variables for PC (i.e., parents and children) discovery. In this article, we propose an efficient local causal structure learning algorithm around a target variable, called LCS-FS (Local Causal Structure learning by Feature Selection). First, to construct the local causal skeleton of the target, we employ feature selection for finding PC without searching for conditioning sets to speed up PC discovery, leading to improve the skeleton construction efficiency. Second, to orient edges in this local causal skeleton, we propose an efficient method to find separating sets from the subsets of PC for identifying V-structures. With the integration of feature selection and the new way of finding separating sets, LCS-FS recursively finds the spouses of Markov blankets in local causal skeleton for edge orientations, until the direct causes and direct effects of the target are distinguished. The experiments on five benchmark Bayesian networks with the number of variables from 35 to 801 validate that our algorithm achieves higher efficiency and better accuracy than the state-of-the-art local causal structure learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jinbiaofan发布了新的文献求助10
刚刚
英俊的铭应助海绵宝宝采纳,获得10
1秒前
2秒前
顺利毕业发布了新的文献求助10
3秒前
Owen应助明亮的妙芙采纳,获得10
3秒前
小二郎应助结实的帆布鞋采纳,获得10
4秒前
doni发布了新的文献求助30
4秒前
4秒前
5秒前
6秒前
许甜甜鸭应助科研通管家采纳,获得20
6秒前
江峰应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
6秒前
个性归尘应助科研通管家采纳,获得30
7秒前
英姑应助科研通管家采纳,获得10
7秒前
7秒前
叶勉发布了新的文献求助10
7秒前
彳亍1117应助淡淡的山芙采纳,获得10
7秒前
一帆风顺发布了新的文献求助10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
yourself发布了新的文献求助10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
8秒前
8秒前
Ava应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Experimental Design for the Life Sciences 200
Semiconductor Wafer Bonding: Science Technology, and Applications VI 200
Parallel Optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835735
求助须知:如何正确求助?哪些是违规求助? 3378088
关于积分的说明 10502218
捐赠科研通 3097678
什么是DOI,文献DOI怎么找? 1705955
邀请新用户注册赠送积分活动 820760
科研通“疑难数据库(出版商)”最低求助积分说明 772274