NeuroCS: A Tool to Predict Cleavage Sites of Neuropeptide Precursors

神经肽 特征选择 计算机科学 神经肽Y受体 劈理(地质) 特征提取 特征(语言学) 人工智能 数据挖掘 机器学习 化学 生物 生物化学 哲学 古生物学 受体 断裂(地质) 语言学
作者
Ying Wang,Jisoo Kang,Ning Li,Yuwei Zhou,Zhongjie Tang,Bifang He,Jian Huang
出处
期刊:Protein and Peptide Letters [Bentham Science Publishers]
被引量:2
标识
DOI:10.2174/0929866526666191112150636
摘要

Background: Neuropeptides are a class of bioactive peptides produced from neuropeptide precursors through a series of extremely complex processes, mediating neuronal regulations in many aspects. Accurate identification of cleavage sites of neuropeptide precursors is of great significance for the development of neuroscience and brain science. Objective: With the explosive growth of neuropeptide precursor data, it is pretty much needed to develop bioinformatics methods for predicting neuropeptide precursors’ cleavage sites quickly and efficiently. Method : We started with processing the neuropeptide precursor data from SwissProt and NueoPedia into two sets of data, training dataset and testing dataset. Subsequently, six feature extraction schemes were applied to generate different feature sets and then feature selection methods were used to find the optimal feature subset of each. Thereafter the support vector machine was utilized to build models for different feature types. Finally, the performance of models were evaluated with the independent testing dataset. Results: Six models are built through support vector machine. Among them the enhanced amino acid composition-based model reaches the highest accuracy of 91.60% in the 5-fold cross validation. When evaluated with independent testing dataset, it also showed an excellent performance with a high accuracy of 90.37% and Area under Receiver Operating Characteristic curve up to 0.9576. Conclusion: The performance of the developed model was decent. Moreover, for users’ convenience, an online web server called NeuroCS is built, which is freely available at http://i.uestc.edu.cn/NeuroCS/dist/index.html#/. NeuroCS can be used to predict neuropeptide precursors’ cleavage sites effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不眠的人完成签到,获得积分10
1秒前
大兵哥发布了新的文献求助10
1秒前
六六完成签到,获得积分10
2秒前
Owen应助糖醋可乐采纳,获得10
2秒前
3秒前
3秒前
打打应助111采纳,获得10
3秒前
wyuanhu完成签到,获得积分10
3秒前
甜妹i怎么会不甜完成签到,获得积分10
3秒前
sv完成签到,获得积分10
4秒前
轩某完成签到,获得积分20
4秒前
4秒前
NikiJu完成签到 ,获得积分10
4秒前
哈哈完成签到 ,获得积分10
5秒前
yanchen发布了新的文献求助10
5秒前
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
党小波应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
6秒前
trans应助科研通管家采纳,获得10
6秒前
zbw发布了新的文献求助10
6秒前
cdercder应助科研通管家采纳,获得10
6秒前
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
kingwill应助lihua采纳,获得20
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
trans应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
trans应助科研通管家采纳,获得10
6秒前
kaustal完成签到,获得积分10
7秒前
7秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cardiopulmonary Bypass 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837986
求助须知:如何正确求助?哪些是违规求助? 3380201
关于积分的说明 10512925
捐赠科研通 3099817
什么是DOI,文献DOI怎么找? 1707224
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772717