亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Knowledge boosting: a graph-based integration approach with multi-omics data and genomic knowledge for cancer clinical outcome prediction

基因组学 计算生物学 生物信息学 计算机科学 基因 生物 基因组 遗传学
作者
Dokyoon Kim,Je Gun Joung,Kyung-Ah Sohn,Hyunjung Shin,Yu Rang Park,Marylyn D. Ritchie,Ju Han Kim
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:22 (1): 109-120 被引量:81
标识
DOI:10.1136/amiajnl-2013-002481
摘要

Cancer can involve gene dysregulation via multiple mechanisms, so no single level of genomic data fully elucidates tumor behavior due to the presence of numerous genomic variations within or between levels in a biological system. We have previously proposed a graph-based integration approach that combines multi-omics data including copy number alteration, methylation, miRNA, and gene expression data for predicting clinical outcome in cancer. However, genomic features likely interact with other genomic features in complex signaling or regulatory networks, since cancer is caused by alterations in pathways or complete processes.Here we propose a new graph-based framework for integrating multi-omics data and genomic knowledge to improve power in predicting clinical outcomes and elucidate interplay between different levels. To highlight the validity of our proposed framework, we used an ovarian cancer dataset from The Cancer Genome Atlas for predicting stage, grade, and survival outcomes.Integrating multi-omics data with genomic knowledge to construct pre-defined features resulted in higher performance in clinical outcome prediction and higher stability. For the grade outcome, the model with gene expression data produced an area under the receiver operating characteristic curve (AUC) of 0.7866. However, models of the integration with pathway, Gene Ontology, chromosomal gene set, and motif gene set consistently outperformed the model with genomic data only, attaining AUCs of 0.7873, 0.8433, 0.8254, and 0.8179, respectively.Integrating multi-omics data and genomic knowledge to improve understanding of molecular pathogenesis and underlying biology in cancer should improve diagnostic and prognostic indicators and the effectiveness of therapies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Yon完成签到 ,获得积分10
7秒前
12秒前
acc完成签到,获得积分10
13秒前
acc发布了新的文献求助10
17秒前
23秒前
苗条白枫完成签到 ,获得积分10
25秒前
27秒前
学术小白完成签到,获得积分10
28秒前
大橘发布了新的文献求助10
29秒前
学术小白发布了新的文献求助10
31秒前
tkurds完成签到,获得积分10
31秒前
大橘完成签到,获得积分20
34秒前
CATH完成签到 ,获得积分10
34秒前
Nakacoke77完成签到,获得积分10
40秒前
Becky完成签到 ,获得积分10
42秒前
畅快行云完成签到,获得积分20
48秒前
华仔应助jeff采纳,获得10
51秒前
Orange应助eurus采纳,获得10
51秒前
TopBanana完成签到 ,获得积分10
52秒前
锅锅应助学术小白采纳,获得10
57秒前
单薄天宇应助科研通管家采纳,获得10
58秒前
852应助科研通管家采纳,获得10
58秒前
Jasper应助科研通管家采纳,获得10
58秒前
jeff完成签到,获得积分20
1分钟前
tkurds发布了新的文献求助10
1分钟前
az完成签到 ,获得积分10
1分钟前
王某人完成签到 ,获得积分10
1分钟前
打打应助默默犀牛采纳,获得30
1分钟前
1分钟前
默默犀牛完成签到,获得积分10
1分钟前
Carrots完成签到 ,获得积分10
1分钟前
1分钟前
rofsc完成签到 ,获得积分10
1分钟前
1分钟前
FashionBoy应助王路飞采纳,获得10
1分钟前
1分钟前
坦率大米发布了新的文献求助10
1分钟前
study关注了科研通微信公众号
1分钟前
eurus发布了新的文献求助10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792399
求助须知:如何正确求助?哪些是违规求助? 3336687
关于积分的说明 10281846
捐赠科研通 3053424
什么是DOI,文献DOI怎么找? 1675608
邀请新用户注册赠送积分活动 803581
科研通“疑难数据库(出版商)”最低求助积分说明 761457