维数(图论)
修剪
算法
切片
递归(计算机科学)
集合(抽象数据类型)
数学
启发式
计算机科学
指数
树(集合论)
数学优化
组合数学
万维网
哲学
生物
程序设计语言
语言学
农学
作者
Carlos M. Fonseca,Luís Paquete,Manuel López‐Ibáñez
出处
期刊:IEEE International Conference on Evolutionary Computation
日期:2006-09-22
卷期号:: 1157-1163
被引量:429
标识
DOI:10.1109/cec.2006.1688440
摘要
This paper presents a recursive, dimension-sweep algorithm for computing the hypervolume indicator of the quality of a set of n non-dominated points in d > 2 dimensions. It improves upon the existing HSO (Hypervolume by Slicing Objectives) algorithm by pruning the recursion tree to avoid repeated dominance checks and the recalculation of partial hypervolumes. Additionally, it incorporates a recent result for the three-dimensional special case. The proposed algorithm achieves O(n d−2 log n) time and linear space complexity in the worst-case, but experimental results show that the pruning techniques used may reduce the time complexity exponent even further.
科研通智能强力驱动
Strongly Powered by AbleSci AI