ENSEMBLE EMPIRICAL MODE DECOMPOSITION: A NOISE-ASSISTED DATA ANALYSIS METHOD

白噪声 希尔伯特-黄变换 计算机科学 滤波器(信号处理) 数学 噪音(视频) 模式(计算机接口) 人工智能 算法 信号(编程语言) 统计 语音识别 计算机视觉 操作系统 图像(数学) 程序设计语言
作者
Zhaohua Wu,Norden E. Huang
出处
期刊:Advances in Adaptive Data Analysis [World Scientific]
卷期号:01 (01): 1-41 被引量:7555
标识
DOI:10.1142/s1793536909000047
摘要

A new Ensemble Empirical Mode Decomposition (EEMD) is presented. This new approach consists of sifting an ensemble of white noise-added signal (data) and treats the mean as the final true result. Finite, not infinitesimal, amplitude white noise is necessary to force the ensemble to exhaust all possible solutions in the sifting process, thus making the different scale signals to collate in the proper intrinsic mode functions (IMF) dictated by the dyadic filter banks. As EEMD is a time–space analysis method, the added white noise is averaged out with sufficient number of trials; the only persistent part that survives the averaging process is the component of the signal (original data), which is then treated as the true and more physical meaningful answer. The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF. With this ensemble mean, one can separate scales naturally without any a priori subjective criterion selection as in the intermittence test for the original EMD algorithm. This new approach utilizes the full advantage of the statistical characteristics of white noise to perturb the signal in its true solution neighborhood, and to cancel itself out after serving its purpose; therefore, it represents a substantial improvement over the original EMD and is a truly noise-assisted data analysis (NADA) method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助zhao采纳,获得10
1秒前
1秒前
丸子完成签到,获得积分10
3秒前
xyz完成签到,获得积分10
3秒前
小蘑菇应助灵巧的大开采纳,获得10
4秒前
qiuqiu发布了新的文献求助30
5秒前
kiki发布了新的文献求助10
7秒前
婷糖完成签到,获得积分10
7秒前
hilda0129完成签到,获得积分10
7秒前
9秒前
10秒前
10秒前
田様应助科西西采纳,获得10
11秒前
科研通AI5应助嘻嘻采纳,获得10
12秒前
虚幻不弱发布了新的文献求助10
14秒前
科研通AI5应助zxb采纳,获得10
15秒前
l18830901880完成签到,获得积分20
16秒前
今后应助一天八杯水采纳,获得10
16秒前
SciMock发布了新的文献求助30
16秒前
小二郎应助kiki采纳,获得10
16秒前
19秒前
李健的小迷弟应助scsc采纳,获得10
21秒前
朝文奕完成签到,获得积分10
21秒前
ztt关注了科研通微信公众号
21秒前
22秒前
许多年以后完成签到,获得积分10
22秒前
xiubo128完成签到 ,获得积分10
23秒前
虚幻不弱完成签到,获得积分10
24秒前
SciMock完成签到,获得积分20
25秒前
卡司发布了新的文献求助10
27秒前
xunxunmimi完成签到,获得积分10
27秒前
29秒前
NexusExplorer应助灵巧晓山采纳,获得10
29秒前
31秒前
小小怪发布了新的文献求助10
34秒前
科研通AI2S应助qizhixu采纳,获得10
35秒前
乐乐应助大饼采纳,获得10
35秒前
嘻嘻发布了新的文献求助10
36秒前
37秒前
38秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794514
求助须知:如何正确求助?哪些是违规求助? 3339370
关于积分的说明 10295665
捐赠科研通 3056025
什么是DOI,文献DOI怎么找? 1676881
邀请新用户注册赠送积分活动 804890
科研通“疑难数据库(出版商)”最低求助积分说明 762174