生物
交易激励
发起人
转录因子
基因
响应元素
抄写(语言学)
基因表达
分子生物学
互补DNA
MYB公司
生物化学
语言学
哲学
作者
Chung-An Lu,Tuan‐Hua David Ho,Shin-Lon Ho,Su‐May Yu
出处
期刊:The Plant Cell
[Oxford University Press]
日期:2002-07-18
卷期号:14 (8): 1963-1980
被引量:246
摘要
The expression of α-amylase genes in cereals is induced by both gibberellin (GA) and sugar starvation. All α-amylase genes isolated from cereals contain a TATCCA element or its variants at positions ∼90 to 150 bp upstream of the transcription start sites. The TATCCA element was shown previously to be an important component of the GA response complex and the sugar response complex of α-amylase gene promoters. In the present study, three cDNA clones encoding novel MYB proteins with single DNA binding domains were isolated from a rice suspension cell cDNA library and designated OsMYBS1, OsMYBS2, and OsMYBS3. Gel mobility shift experiments with OsMYBSs showed that they bind specifically to the TATCCA element in vitro. Yeast one-hybrid experiments demonstrated that OsMYBS1 and OsMYBS2 bind to the TATCCA element and transactivate a promoter containing the TATCCA element in vivo. Transient expression assays with barley half-seeds showed that OsMYBS1 and OsMYBS2 transactivate a promoter containing the TATCCA element when sugar is provided, whereas OsMYBS3 represses transcription of the same promoter under sugar starvation. Transient expression assays also showed that these three OsMYBSs cooperate with a GA-regulated transcription factor, HvMYBGa, in the transactivation of a low-pI barley α-amylase gene promoter in the absence of GA. Two-hybrid experiments with barley half-seeds showed that OsMYBS1 is able to form a homodimer. The present study demonstrates that differential DNA binding affinity, promoter transactivation ability, dimerization, and interactions with other protein factors determine the biological function of OsMYBSs. This study also suggests that common transcription factors are involved in the sugar and hormonal regulation of α-amylase gene expression in cereals.
科研通智能强力驱动
Strongly Powered by AbleSci AI