非线性共轭梯度法
共轭梯度法的推导
共轭梯度法
共轭残差法
梯度下降
结合
双共轭梯度法
梯度法
数学
趋同(经济学)
近端梯度法
应用数学
下降(航空)
非线性系统
数学分析
数学优化
计算机科学
物理
人工智能
人工神经网络
量子力学
经济增长
气象学
经济
出处
期刊:Wiley Encyclopedia of Operations Research and Management Science
日期:2011-01-01
被引量:222
标识
DOI:10.1002/9780470400531.eorms0183
摘要
Abstract Conjugate gradient methods are a class of important methods for solving linear equations and for solving nonlinear optimization. In this article, a review on conjugate gradient methods for unconstrained optimization is given. They are divided into early conjugate gradient methods, descent conjugate gradient methods, and sufficient descent conjugate gradient methods. Two general convergence theorems are provided for the conjugate gradient method assuming the descent property of each search direction. Some research issues on conjugate gradient methods are mentioned.
科研通智能强力驱动
Strongly Powered by AbleSci AI