化学
安培法
电极
果糖
检出限
分析化学(期刊)
纳米颗粒
工作电极
石墨
色谱法
电化学
纳米技术
材料科学
有机化学
物理化学
作者
Tianyan You,Osamu Niwa,Zilin Chen,Katsuyoshi Hayashi,Masato Tomita,Shigeru Hirono
摘要
We achieved improved detection limits for sugars by developing a novel thin film containing 0.8% highly dispersed Ni nanoparticles in disordered graphite-like carbon (Ni-NDC) as a detection electrode for high-performance liquid chromatography. The Ni-NDC film was prepared in one step by a simple radio frequency (rf) sputtering method at a temperature below 200 degrees C. We characterized the film by XPS, TEM, and AFM analysis and found that the average Ni nanoparticle size was 3 nm and that the film consisted of a mixture of Ni, NiO, Ni2O3, and Ni(OH)2. We studied the electrochemical detection of sugars using the 0.8% Ni-NDC film electrode. The film electrode had excellent electrocatalytic ability and good stability compared with a Ni-bulk electrode with regard to the electrooxidation of sugars. We employed the Ni-NDC film as an HPLC detection electrode. We achieved a good separation of four sugars (glucose, fructose, sucrose, lactose) at a relatively low constant detection potential (0.40 V vs Ag/AgCl) and a linearity of over 3 orders of magnitude. We obtained improved detection limits for the investigated sugars, namely, 20, 25, 50, and 37 nM for glucose, fructose, sucrose, and lactose, respectively. This is at least 1 order of magnitude lower than the detection limits obtained with a Ni-bulk electrode with the same measurement condition. The Ni-NDC film electrode also showed good reproducibility with a relative standard deviation of 1.75% for 40 consecutive injections of glucose in a flow system.
科研通智能强力驱动
Strongly Powered by AbleSci AI