亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Intelligent Clinical Decision Support System for Preoperative Prediction of Lymph Node Metastasis in Gastric Cancer

无线电技术 医学 置信区间 支持向量机 交叉验证 一致性 转移 放射科 淋巴结 试验装置 淋巴结转移 人工智能 癌症 计算机科学 内科学
作者
Qi Sheng Feng,Chang Liu,Liang Qi,Shi Sun,Yang Song,Guang Yang,Yudong Zhang,Xisheng Liu
出处
期刊:Journal of The American College of Radiology [Elsevier BV]
卷期号:16 (7): 952-960 被引量:41
标识
DOI:10.1016/j.jacr.2018.12.017
摘要

Purpose The aim of this study was to develop and validate a computational clinical decision support system (DSS) on the basis of CT radiomics features for the prediction of lymph node (LN) metastasis in gastric cancer (GC) using machine learning–based analysis. Methods Clinicopathologic and CT imaging data were retrospectively collected from 490 patients who were diagnosed with GC between January 2002 and December 2016. Radiomics features were extracted from venous-phase CT images. Relevant features were selected, ranked, and modeled using a support vector machine classifier in 326 training and validation data sets. A model test was performed independently in a test set (n = 164). Finally, a head-to-head comparison of the diagnostic performance of the DSS and that of the conventional staging criterion was performed. Results Two hundred ninety-seven of the 490 patients examined had histopathologic evidence of LN metastasis, yielding a 60.6% metastatic rate. The area under the curve for predicting LN+ was 0.824 (95% confidence interval, 0.804-0.847) for the DSS in the training and validation data and 0.764 (95% confidence interval, 0.699-0.833) in the test data. The calibration plots showed good concordance between the predicted and observed probability of LN+ using the DSS approach. The DSS was better able to predict LN metastasis than the conventional staging criterion in the training and validation data (accuracy 76.4% versus 63.5%) and in the test data (accuracy 71.3% versus 63.2%) Conclusions A DSS based on 13 “worrisome” radiomics features appears to be a promising tool for the preoperative prediction of LN status in patients with GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
田様应助幻影采纳,获得10
22秒前
充电宝应助wait采纳,获得10
24秒前
来玩的完成签到,获得积分10
28秒前
34秒前
36秒前
wait发布了新的文献求助10
39秒前
幻影发布了新的文献求助10
40秒前
落山姬完成签到,获得积分10
1分钟前
紫色天蓝完成签到,获得积分10
1分钟前
1分钟前
紫色天蓝发布了新的文献求助10
1分钟前
1分钟前
1分钟前
澳澳发布了新的文献求助10
1分钟前
Ldq应助科研通管家采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助150
2分钟前
2分钟前
汉堡包应助阿米尔灿采纳,获得10
2分钟前
3分钟前
3分钟前
阿米尔灿发布了新的文献求助10
3分钟前
阿米尔灿完成签到,获得积分10
3分钟前
3分钟前
DJDJDDDJ发布了新的文献求助10
3分钟前
追梦人完成签到 ,获得积分10
4分钟前
NexusExplorer应助科研通管家采纳,获得10
4分钟前
4分钟前
zz发布了新的文献求助10
4分钟前
DJDJDDDJ发布了新的文献求助10
4分钟前
幻影完成签到,获得积分10
4分钟前
5分钟前
白天亮完成签到,获得积分10
5分钟前
5分钟前
oleskarabach完成签到,获得积分20
5分钟前
5分钟前
6分钟前
Ldq应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5064764
求助须知:如何正确求助?哪些是违规求助? 4287680
关于积分的说明 13359222
捐赠科研通 4106245
什么是DOI,文献DOI怎么找? 2248516
邀请新用户注册赠送积分活动 1254025
关于科研通互助平台的介绍 1185464