Deep-learning-based seismic data interpolation: A preliminary result

插值(计算机图形学) 计算机科学 混叠 深度学习 卷积神经网络 线性插值 缺少数据 算法 残余物 特征(语言学) 人工智能 模式识别(心理学) 机器学习 图像(数学) 欠采样 哲学 语言学
作者
Benfeng Wang,Ning Zhang,Wenkai Lu,J. P. Wang
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:84 (1): V11-V20 被引量:314
标识
DOI:10.1190/geo2017-0495.1
摘要

Seismic data interpolation is a longstanding issue. Most current methods are only suitable for randomly missing cases. To deal with regularly missing cases, an antialiasing strategy should be included. However, seismic survey design using a random distribution of shots and receivers is always operationally challenging and impractical. We have used deep-learning-based approaches for seismic data antialiasing interpolation, which could extract deeper features of the training data in a nonlinear way by self-learning. It can also avoid linear events, sparsity, and low-rank assumptions of the traditional interpolation methods. Based on convolutional neural networks, eight-layers residual learning networks (ResNets) with a better back-propagation property for deep layers is designed for interpolation. Detailed training analysis is also performed. A set of simulated data is used to train the designed ResNets. The performance is assessed with several synthetic and field data. Numerical examples indicate that the trained ResNets can help to reconstruct regularly missing traces with high accuracy. The interpolated results in the time-space domain and the frequency-wavenumber ([Formula: see text]-[Formula: see text]) domain demonstrate the validity of the trained ResNets. Even though the accuracy decreases with the increase of the feature difference between the test and training data, the proposed method can still provide reasonable interpolation results. Finally, the trained ResNets is used to reconstruct dense data with halved trace intervals for synthetic and field data. The reconstructed dense data are more continuous along the spatial direction, and the spatial aliasing effects disappear in the [Formula: see text]-[Formula: see text] domain. The reconstructed dense data have the potential to improve the accuracy of subsequent seismic data processing and inversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
付小源完成签到,获得积分10
刚刚
卫明魁发布了新的文献求助10
刚刚
cjdsb完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
HanruiWang完成签到,获得积分10
2秒前
小玉米完成签到,获得积分10
3秒前
丘比特应助zxj采纳,获得10
4秒前
6秒前
风清扬发布了新的文献求助10
7秒前
8秒前
8秒前
su完成签到 ,获得积分10
10秒前
10秒前
枫华发布了新的文献求助10
11秒前
Hello应助风清扬采纳,获得10
12秒前
13秒前
Hello应助123321采纳,获得10
13秒前
15秒前
小明应助sky采纳,获得30
15秒前
18秒前
CodeCraft应助闪亮的屁灯采纳,获得10
20秒前
李爱国应助小4采纳,获得10
21秒前
李健应助张靖采纳,获得10
22秒前
tea发布了新的文献求助10
24秒前
Leo发布了新的文献求助10
25秒前
26秒前
30秒前
32秒前
32秒前
Owen应助格格采纳,获得10
33秒前
安详的斓完成签到,获得积分10
33秒前
彭于晏应助Leo采纳,获得10
34秒前
35秒前
35秒前
35秒前
懒惰扼杀激情完成签到 ,获得积分10
37秒前
kun发布了新的文献求助10
39秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4778313
求助须知:如何正确求助?哪些是违规求助? 4109135
关于积分的说明 12711770
捐赠科研通 3831234
什么是DOI,文献DOI怎么找? 2113329
邀请新用户注册赠送积分活动 1136774
关于科研通互助平台的介绍 1020969