Deep-learning-based seismic data interpolation: A preliminary result

插值(计算机图形学) 计算机科学 混叠 深度学习 卷积神经网络 线性插值 缺少数据 算法 残余物 特征(语言学) 人工智能 模式识别(心理学) 机器学习 图像(数学) 欠采样 哲学 语言学
作者
Benfeng Wang,Ning Zhang,Wenkai Lu,J. P. Wang
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:84 (1): V11-V20 被引量:314
标识
DOI:10.1190/geo2017-0495.1
摘要

Seismic data interpolation is a longstanding issue. Most current methods are only suitable for randomly missing cases. To deal with regularly missing cases, an antialiasing strategy should be included. However, seismic survey design using a random distribution of shots and receivers is always operationally challenging and impractical. We have used deep-learning-based approaches for seismic data antialiasing interpolation, which could extract deeper features of the training data in a nonlinear way by self-learning. It can also avoid linear events, sparsity, and low-rank assumptions of the traditional interpolation methods. Based on convolutional neural networks, eight-layers residual learning networks (ResNets) with a better back-propagation property for deep layers is designed for interpolation. Detailed training analysis is also performed. A set of simulated data is used to train the designed ResNets. The performance is assessed with several synthetic and field data. Numerical examples indicate that the trained ResNets can help to reconstruct regularly missing traces with high accuracy. The interpolated results in the time-space domain and the frequency-wavenumber ([Formula: see text]-[Formula: see text]) domain demonstrate the validity of the trained ResNets. Even though the accuracy decreases with the increase of the feature difference between the test and training data, the proposed method can still provide reasonable interpolation results. Finally, the trained ResNets is used to reconstruct dense data with halved trace intervals for synthetic and field data. The reconstructed dense data are more continuous along the spatial direction, and the spatial aliasing effects disappear in the [Formula: see text]-[Formula: see text] domain. The reconstructed dense data have the potential to improve the accuracy of subsequent seismic data processing and inversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxfsx应助爱你采纳,获得10
刚刚
研友_GZ3zRn完成签到 ,获得积分0
1秒前
flyingpig发布了新的文献求助10
2秒前
kai发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
lzy发布了新的文献求助10
3秒前
5秒前
5秒前
比奇堡悍匪派大星完成签到,获得积分10
5秒前
天天快乐应助不知名网友采纳,获得10
5秒前
苹果大侠完成签到 ,获得积分10
6秒前
6秒前
army77发布了新的文献求助10
6秒前
7秒前
慕青应助ztlooo采纳,获得10
8秒前
翠花花完成签到,获得积分10
8秒前
龙华之士发布了新的文献求助10
8秒前
zwt完成签到,获得积分20
9秒前
10秒前
周VV发布了新的文献求助10
10秒前
10秒前
Jasper应助不吃橘子采纳,获得10
11秒前
11秒前
11秒前
12秒前
aappledog发布了新的文献求助60
12秒前
yyy完成签到,获得积分10
13秒前
13秒前
flyingpig完成签到,获得积分10
13秒前
arizaki7应助稳重盼夏采纳,获得10
13秒前
Hey发布了新的文献求助30
13秒前
12345发布了新的文献求助10
13秒前
努力上进的小张完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
SciGPT应助焱阳采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480837
求助须知:如何正确求助?哪些是违规求助? 4581998
关于积分的说明 14382987
捐赠科研通 4510621
什么是DOI,文献DOI怎么找? 2471965
邀请新用户注册赠送积分活动 1458286
关于科研通互助平台的介绍 1431972