Attribution reduction based on sequential three-way search of granularity

还原 粒度 数据挖掘 还原(数学) 数学 计算机科学 人工智能 算法 粗集 几何学 操作系统
作者
Xun Wang,Pingxin Wang,Xibei Yang,Yiyu Yao
出处
期刊:International Journal of Machine Learning and Cybernetics [Springer Science+Business Media]
卷期号:12 (5): 1439-1458 被引量:15
标识
DOI:10.1007/s13042-020-01244-x
摘要

Most existing results about attribute reduction are reported by considering one and only one granularity, especially for the strategies of searching reducts. Nevertheless, how to derive reduct from multi-granularity has rarely been taken into account. One of the most important advantages of multi-granularity based attribute reduction is that it is useful in investigating the variation of the performances of reducts with respect to different granularities. From this point of view, the concept of Sequential Granularity Attribute Reduction (SGAR) is systemically studied in this paper. Different from previous attribute reductions, the aim of SGAR is to find multiple reducts which are derived from a family of ordered granularities. Assuming that a reduct related to the previous granularity may offer the guidance for computing a reduct related to the current granularity, the idea of the three-way is introduced into the searching of sequential granularity reduct. The three different ways in such process are: (1) the reduct related to the previous granularity is precisely the reduct related to the current granularity; (2) the reduct related to the previous granularity is not the reduct related to the current granularity; (3) the reduct related to the previous granularity is possible to be the reduct related to the current granularity. Therefore, a three-way based forward greedy searching is designed to calculate the sequential granularity reduct. The main advantage of our strategy is that the number of times to evaluate the candidate attributes can be reduced. Experimental results over 12 UCI data sets demonstrate the following: (1) three-way based searching is superior to some state-of-the-art acceleration algorithms in time consumption of deriving reducts; (2) the sequential granularity reducts obtained by proposed three-way based searching will provide well-matched classification performances. This study suggests new trends concerning the problem of attribute selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助ljs采纳,获得10
刚刚
02发布了新的文献求助10
1秒前
Shayulajiao完成签到,获得积分10
1秒前
SciGPT应助超清爽百香果采纳,获得10
2秒前
OKC完成签到,获得积分10
4秒前
饼子完成签到 ,获得积分10
4秒前
5秒前
5秒前
runrun发布了新的文献求助10
6秒前
6秒前
7秒前
innerpeace完成签到,获得积分10
7秒前
7秒前
核桃应助卓惜筠采纳,获得10
8秒前
8秒前
9秒前
9秒前
赘婿应助羊羊羊采纳,获得10
9秒前
MOMO完成签到,获得积分10
10秒前
hehehe85200完成签到,获得积分10
10秒前
11秒前
深情安青应助喻欣采纳,获得10
11秒前
DYY发布了新的文献求助10
11秒前
收拾收拾完成签到,获得积分10
11秒前
12秒前
冤家Gg完成签到,获得积分10
12秒前
nanana发布了新的文献求助10
12秒前
所所应助MissF采纳,获得10
13秒前
13秒前
甜美鹤完成签到,获得积分10
13秒前
14秒前
淡淡的向雁完成签到,获得积分10
16秒前
彭于晏应助泯珉采纳,获得10
17秒前
bc应助用户12306采纳,获得20
17秒前
圈圈完成签到 ,获得积分10
17秒前
斯文败类应助bambibloom采纳,获得10
17秒前
18秒前
18秒前
龚德燕发布了新的文献求助10
18秒前
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796310
求助须知:如何正确求助?哪些是违规求助? 3341256
关于积分的说明 10305642
捐赠科研通 3057817
什么是DOI,文献DOI怎么找? 1677946
邀请新用户注册赠送积分活动 805721
科研通“疑难数据库(出版商)”最低求助积分说明 762759