A Deep Learning Model for the Accurate and Reliable Classification of Disc Degeneration Based on MRI Data

人工智能 计算机科学 模式识别(心理学) 变性(医学) 病理 医学
作者
Frank Niemeyer,Fabio Galbusera,Youping Tao,Annette Kienle,Meinrad Beer,Hans‐Joachim Wilke
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:56 (2): 78-85 被引量:49
标识
DOI:10.1097/rli.0000000000000709
摘要

Objectives Although magnetic resonance imaging–based formalized grading schemes for intervertebral disc degeneration offer improved reproducibility compared with purely subjective ratings, their intrarater and interrater reliability are not nearly good enough to be able to detect small to medium effects in clinical longitudinal studies. The aim of this study thus was to develop a method that enables automatic and therefore reproducible and reliable evaluation of disc degeneration based on conventional clinical image data and Pfirrmann's grading scheme. Materials and Methods We propose a classifier based on a deep convolutional neural network that we trained on a large, manually evaluated data set of 1599 patients (7948 intervertebral discs). To improve upon the status quo, we focused on the quality of the training data and performed extensive hyperparameter optimization. We assessed the potential benefits of optimizing loss functions beyond common cross-entropy loss, such as soft kappa loss, ordinal cross-entropy loss, or regression losses. We furthermore experimented with ways to mitigate class imbalance by pooling classes or using class-weighted loss functions. During model development and hyperparameter optimization, we used a fixed 90%/10% training/validation set split. To estimate real-world prediction performance, we performed 10-fold cross-validation. Results The evaluated image data results in a Gaussian degeneration grade distribution, and thus grades 1 and 5 are slightly underrepresented in the training set. Our default cross-entropy–based classifier achieves a reliability of κ = 0.92 (Cohen κ), an average sensitivity of 90.2%, and an average precision of 92.5%. In 99.2% of validation cases, the network's prediction deviates at most 1 Pfirrmann grades from the ground truth. Framed as an ordinal regression problem, the mean absolute error between the ground truth and the prediction is 0.08 Pfirrmann grade with a correlation of r = 0.96. The results of the 10-fold cross validation confirm those performance estimates, indicating no substantial overfitting. More sophisticated loss functions, class-based loss weighting, or class pooling did not lead to improved classification performance overall. Conclusions With a reliability of κ > 0.9, our system clearly outperforms average human interrater as well as intrarater reliability. With an average sensitivity of more than 90%, our classifier also surpasses state-of-the-art machine learning solutions for automatically grading disc degeneration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡的小蘑菇完成签到 ,获得积分10
刚刚
李凤凤完成签到 ,获得积分10
刚刚
QCB完成签到 ,获得积分10
2秒前
鱼鱼鱼鱼鱼完成签到 ,获得积分10
2秒前
614521发布了新的文献求助20
6秒前
l玖应助小居很哇塞采纳,获得10
7秒前
乐人完成签到 ,获得积分10
10秒前
14秒前
拾壹完成签到,获得积分10
16秒前
大分子完成签到,获得积分10
17秒前
judy完成签到,获得积分10
17秒前
liwu完成签到 ,获得积分10
17秒前
17秒前
sy完成签到 ,获得积分10
17秒前
加湿器发布了新的文献求助10
20秒前
研时友完成签到,获得积分10
21秒前
luluyang完成签到 ,获得积分10
22秒前
innocent完成签到,获得积分10
22秒前
22秒前
qwe完成签到,获得积分10
23秒前
小居很哇塞完成签到,获得积分10
23秒前
阳光保温杯完成签到 ,获得积分10
27秒前
碧蓝巧荷完成签到 ,获得积分10
28秒前
tesla完成签到,获得积分10
29秒前
打打应助AlexLee采纳,获得10
32秒前
丘比特应助614521采纳,获得10
33秒前
林家小弟完成签到 ,获得积分10
33秒前
spp完成签到 ,获得积分0
35秒前
leotao完成签到,获得积分10
39秒前
lixuan完成签到 ,获得积分10
42秒前
蘑菇屋完成签到 ,获得积分10
42秒前
黄坤完成签到,获得积分10
43秒前
最棒哒完成签到 ,获得积分10
45秒前
eee完成签到,获得积分10
45秒前
张小馨完成签到 ,获得积分10
46秒前
48秒前
无限的含羞草完成签到,获得积分10
50秒前
贤惠的水壶完成签到,获得积分20
50秒前
50秒前
不敢装睡完成签到,获得积分10
50秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815909
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402490
捐赠科研通 3077249
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743