A Deep Learning Model for the Accurate and Reliable Classification of Disc Degeneration Based on MRI Data

人工智能 计算机科学 模式识别(心理学) 变性(医学) 病理 医学
作者
Frank Niemeyer,Fabio Galbusera,Youping Tao,Annette Kienle,Meinrad Beer,Hans‐Joachim Wilke
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:56 (2): 78-85 被引量:58
标识
DOI:10.1097/rli.0000000000000709
摘要

Objectives Although magnetic resonance imaging–based formalized grading schemes for intervertebral disc degeneration offer improved reproducibility compared with purely subjective ratings, their intrarater and interrater reliability are not nearly good enough to be able to detect small to medium effects in clinical longitudinal studies. The aim of this study thus was to develop a method that enables automatic and therefore reproducible and reliable evaluation of disc degeneration based on conventional clinical image data and Pfirrmann's grading scheme. Materials and Methods We propose a classifier based on a deep convolutional neural network that we trained on a large, manually evaluated data set of 1599 patients (7948 intervertebral discs). To improve upon the status quo, we focused on the quality of the training data and performed extensive hyperparameter optimization. We assessed the potential benefits of optimizing loss functions beyond common cross-entropy loss, such as soft kappa loss, ordinal cross-entropy loss, or regression losses. We furthermore experimented with ways to mitigate class imbalance by pooling classes or using class-weighted loss functions. During model development and hyperparameter optimization, we used a fixed 90%/10% training/validation set split. To estimate real-world prediction performance, we performed 10-fold cross-validation. Results The evaluated image data results in a Gaussian degeneration grade distribution, and thus grades 1 and 5 are slightly underrepresented in the training set. Our default cross-entropy–based classifier achieves a reliability of κ = 0.92 (Cohen κ), an average sensitivity of 90.2%, and an average precision of 92.5%. In 99.2% of validation cases, the network's prediction deviates at most 1 Pfirrmann grades from the ground truth. Framed as an ordinal regression problem, the mean absolute error between the ground truth and the prediction is 0.08 Pfirrmann grade with a correlation of r = 0.96. The results of the 10-fold cross validation confirm those performance estimates, indicating no substantial overfitting. More sophisticated loss functions, class-based loss weighting, or class pooling did not lead to improved classification performance overall. Conclusions With a reliability of κ > 0.9, our system clearly outperforms average human interrater as well as intrarater reliability. With an average sensitivity of more than 90%, our classifier also surpasses state-of-the-art machine learning solutions for automatically grading disc degeneration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感谢大哥的帮助完成签到 ,获得积分10
3秒前
大个应助fanssw采纳,获得10
7秒前
CC完成签到,获得积分10
8秒前
高高从霜完成签到 ,获得积分10
12秒前
12秒前
Elhsin_Karte完成签到,获得积分10
14秒前
小心科研完成签到,获得积分10
15秒前
cing发布了新的文献求助10
17秒前
情怀应助fanssw采纳,获得10
18秒前
橘子海完成签到 ,获得积分10
18秒前
Yi羿完成签到 ,获得积分10
21秒前
21秒前
wenbinvan完成签到,获得积分0
27秒前
Migrol完成签到,获得积分10
27秒前
小巧的白竹完成签到,获得积分10
28秒前
bkagyin应助一安采纳,获得10
29秒前
Hello应助fanssw采纳,获得10
29秒前
正己化人应助科研通管家采纳,获得10
31秒前
星辰大海应助科研通管家采纳,获得10
31秒前
Owen应助科研通管家采纳,获得30
31秒前
31秒前
科研通AI6应助科研通管家采纳,获得10
32秒前
Joy应助科研通管家采纳,获得10
32秒前
桐桐应助科研通管家采纳,获得10
32秒前
Cpp完成签到 ,获得积分10
34秒前
35秒前
刘柳完成签到 ,获得积分10
37秒前
葛稀完成签到,获得积分10
39秒前
不可以虫鸣吗我是大聪明完成签到 ,获得积分10
39秒前
Mollymama完成签到 ,获得积分10
41秒前
41秒前
zyc完成签到 ,获得积分10
41秒前
Lucas应助fanssw采纳,获得10
42秒前
45秒前
ding应助liugm采纳,获得10
46秒前
dinhogj完成签到,获得积分10
47秒前
年少轻狂最情深完成签到 ,获得积分10
48秒前
48秒前
笑对人生完成签到 ,获得积分10
48秒前
你怎么睡得着觉完成签到,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4774490
求助须知:如何正确求助?哪些是违规求助? 4107380
关于积分的说明 12704969
捐赠科研通 3828308
什么是DOI,文献DOI怎么找? 2111991
邀请新用户注册赠送积分活动 1135950
关于科研通互助平台的介绍 1019463