模块化(生物学)
合作性
XNOR门
与非门逻辑
与非门
合成生物学
模块化设计
逻辑门
蛋白质设计
生物
功能(生物学)
非逻辑
计算生物学
计算机科学
细胞生物学
遗传学
逻辑综合
蛋白质结构
生物化学
逻辑族
程序设计语言
算法
作者
Zibo Chen,Ryan D. Kibler,Andrew C. Hunt,Florian Büsch,Jocelynn Pearl,Mengxuan Jia,Zachary L. VanAernum,Basile I. M. Wicky,Galen Dods,Hanna Liao,Matthew S. Wilken,Christie Ciarlo,Shon Green,Hana El‐Samad,J Stamatoyannopoulos,Vicki H. Wysocki,Michael C. Jewett,Scott E. Boyken,David Baker
出处
期刊:Science
[American Association for the Advancement of Science]
日期:2020-04-02
卷期号:368 (6486): 78-84
被引量:190
标识
DOI:10.1126/science.aay2790
摘要
The design of modular protein logic for regulating protein function at the posttranscriptional level is a challenge for synthetic biology. Here, we describe the design of two-input AND, OR, NAND, NOR, XNOR, and NOT gates built from de novo-designed proteins. These gates regulate the association of arbitrary protein units ranging from split enzymes to transcriptional machinery in vitro, in yeast and in primary human T cells, where they control the expression of the TIM3 gene related to T cell exhaustion. Designed binding interaction cooperativity, confirmed by native mass spectrometry, makes the gates largely insensitive to stoichiometric imbalances in the inputs, and the modularity of the approach enables ready extension to three-input OR, AND, and disjunctive normal form gates. The modularity and cooperativity of the control elements, coupled with the ability to de novo design an essentially unlimited number of protein components, should enable the design of sophisticated posttranslational control logic over a wide range of biological functions.
科研通智能强力驱动
Strongly Powered by AbleSci AI