Interfacial Thermal Conductance across Room-Temperature-Bonded GaN/Diamond Interfaces for GaN-on-Diamond Devices

材料科学 钻石 光电子学 热导率 宽禁带半导体 氮化镓 结温 焦耳加热 界面热阻 电子迁移率 热阻 纳米技术 热的 复合材料 图层(电子) 气象学 物理
作者
Zhe Cheng,Fengwen Mu,Luke Yates,Tadatomo Suga,Samuel Graham
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:12 (7): 8376-8384 被引量:171
标识
DOI:10.1021/acsami.9b16959
摘要

The wide bandgap, high-breakdown electric field, and high carrier mobility makes GaN an ideal material for high-power and high-frequency electronics applications, such as wireless communication and radar systems. However, the performance and reliability of GaN-based high-electron-mobility transistors (HEMTs) are limited by the high channel temperature induced by Joule heating in the device channel. Integration of GaN with high thermal conductivity substrates can improve the heat extraction from GaN-based HEMTs and lower the operating temperature of the device. However, heterogeneous integration of GaN with diamond substrates presents technical challenges to maximize the heat dissipation potential brought by the ultrahigh thermal conductivity of diamond substrates. In this work, two modified room-temperature surface-activated bonding (SAB) techniques are used to bond GaN and single-crystal diamond. Time-domain thermoreflectance (TDTR) is used to measure the thermal properties from room temperature to 480 K. A relatively large thermal boundary conductance (TBC) of the GaN/diamond interfaces with a ∼4 nm interlayer (∼90 MW/(m2 K)) was observed and material characterization was performed to link the interfacial structure with the TBC. Device modeling shows that the measured TBC of the bonded GaN/diamond interfaces can enable high-power GaN devices by taking full advantage of the ultrahigh thermal conductivity of single-crystal diamond. For the modeled devices, the power density of GaN-on-diamond can reach values ∼2.5 times higher than that of GaN-on-SiC and ∼5.4 times higher than that of GaN-on-Si with a maximum device temperature of 250 °C. Our work sheds light on the potential for room-temperature heterogeneous integration of semiconductors with diamond for applications of electronics cooling, especially for GaN-on-diamond devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助iambamboo采纳,获得20
刚刚
虚拟的秋寒完成签到,获得积分10
3秒前
一定发发发完成签到,获得积分10
4秒前
yhmi0809发布了新的文献求助10
4秒前
Lucas应助小马采纳,获得10
6秒前
真棒完成签到,获得积分10
7秒前
9秒前
精明玲完成签到 ,获得积分10
11秒前
16秒前
zjcbk985发布了新的文献求助10
16秒前
16秒前
Akim应助Ado采纳,获得10
17秒前
科研小白完成签到,获得积分10
18秒前
Orange应助lyh采纳,获得10
18秒前
苏浩然完成签到,获得积分10
21秒前
iambamboo发布了新的文献求助20
22秒前
CMCM发布了新的文献求助10
23秒前
feng发布了新的文献求助10
29秒前
外向咖啡完成签到 ,获得积分10
30秒前
零零柒完成签到 ,获得积分10
32秒前
浮游应助彩色的天空采纳,获得10
33秒前
hannah完成签到,获得积分10
36秒前
38秒前
Lsy完成签到,获得积分10
38秒前
planck完成签到 ,获得积分10
39秒前
wu完成签到,获得积分20
39秒前
fly完成签到,获得积分10
40秒前
坚定如南完成签到 ,获得积分10
42秒前
wu发布了新的文献求助10
43秒前
45秒前
慕青应助CMCM采纳,获得10
45秒前
48秒前
48秒前
YH完成签到,获得积分10
50秒前
feng完成签到,获得积分10
51秒前
53秒前
Zzz完成签到,获得积分10
54秒前
爆米花应助典雅的俊驰采纳,获得10
55秒前
隐形曼青应助殷勤的天亦采纳,获得10
58秒前
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4767684
求助须知:如何正确求助?哪些是违规求助? 4104663
关于积分的说明 12697409
捐赠科研通 3822480
什么是DOI,文献DOI怎么找? 2109679
邀请新用户注册赠送积分活动 1134192
关于科研通互助平台的介绍 1015112